J. Nanjing Univ. Math. Biquarterly 9(1992), no.1, 92-101 List of the results in the paper NOTES ON QUARTIC RESIDUE SYMBOLS AND RATIONAL RECIPROCITY LAWS

Zhi-Hong Sun

Department of Mathematics, Huaiyin Teachers College, Huaian, Jiangsu 223001, P.R. China E-mail: hyzhsun@public.hy.js.cn

Notations.

 \mathbb{Z} —the set of integers, $\left(\frac{a}{m}\right)$ —the Jacobi symbol, $\left(\frac{a+bi}{c+di}\right)_4$ —the quartic Jacobi symbol, (m,n)—the greatest common divisor of m and n, $\mathbb{Z}[i]$ —the set $\{a+bi \mid a, b \in \mathbb{Z}\}$, $\bar{\pi}$ —the complex conjugate of π .

For $a, b \in \mathbb{Z}$ the Lucas sequence $\{u_n(a, b)\}$ is defined by

 $u_0(a,b) = 0$, $u_1(a,b) = 1$ and $u_{n+1}(a,b) = bu_n(a,b) - au_{n-1}(a,b)$ $(n \ge 1)$.

For odd prime p and quadratic residue t (mod p) let \sqrt{t} denote one of the solutions of the congruence $x^2 \equiv t \pmod{p}$.

Proposition 1. Let m be a positive odd number, $a, b \in \mathbb{Z}$ and $(a^2 + b^2, m) = 1$. Then

$$\left(\frac{a+bi}{m}\right)_4^2 = \left(\frac{a^2+b^2}{m}\right).$$

Theorem 1. Let p be an odd prime and $b, c \in \mathbb{Z}$. (1) If $\left(\frac{b^2-c^2}{p}\right) = 1$ and $p \nmid c(b+c)$, then

$$\left(\frac{b+c}{p}\right) = \left(\frac{2}{p}\right) \left(\frac{b+\sqrt{b^2-c^2}}{p}\right).$$

(2) If $p \equiv 3 \pmod{4}$, $p \nmid c \text{ and } \left(\frac{b^2 + c^2}{p}\right) = 1$, then

$$\left(\frac{b+ci}{p}\right)_4 = \left(\frac{2\sqrt{b^2+c^2}}{p}\right) \left(\frac{b+\sqrt{b^2+c^2}}{p}\right).$$

(3) If $p \equiv 3 \pmod{4}$ and $\left(\frac{b^2 + c^2}{p}\right) = -1$, then

$$\Big(\frac{b+ci}{p}\Big)_4 = -\Big(\frac{2c\sqrt{-b^2-c^2}}{p}\Big)\Big(\frac{b+\sqrt{-b^2-c^2}}{p}\Big)_4 = i\Big(\frac{2c}{p}\Big)\Big(\frac{u_{\frac{p+1}{2}}(-c^2/4.b)}{p}\Big).$$

Theorem 2. Let p and q be primes such that $p \equiv 3 \pmod{4}$, $q \equiv 1 \pmod{4}$ and $\binom{p}{q} = 1$, and let $q = b^2 + c^2$ with $b, c \in \mathbb{Z}$ and $2 \mid c$.

(i) If $p \mid c$, then $x^4 \equiv p \pmod{q}$ is solvable if and only if $q \equiv 1 \pmod{8}$.

(ii) If $p \mid b$, then $x^4 \equiv p \pmod{q}$ is solvable if and only if $q \equiv p+2 \pmod{8}$.

(iii) If $p \nmid bc$, then $x^4 \equiv p \pmod{q}$ is solvable if and only if $\left(\frac{b+\sqrt{q}}{p}\right) = (-1)^{\frac{q-1}{4}}$, where \sqrt{q} satisfies the condition $\left(\frac{\sqrt{q}}{p}\right) = (-1)^{\frac{p+1}{4}}$.

If p is a prime of the form 4k + 3, $a, b \in \mathbb{Z}$ and $\left(\frac{a^2 + b^2}{p}\right) = 1$, then

$$\left\{ (a+bi)^{\frac{p^2-1}{8}} \right\}^4 = (a+bi)^{\frac{p^2-1}{2}} \equiv \left(\frac{a+bi}{p}\right)_4^2 = \left(\frac{a^2+b^2}{p}\right) = 1 \pmod{p}.$$

Thus there is a unique $r \in \{0, 1, 2, 3\}$ such that $(a + bi)^{\frac{p^2 - 1}{8}} \equiv i^r \pmod{p}$. From this we define the octic residue symbol $\left(\frac{a+bi}{p}\right)_8 = i^r$.

Lemma 1. Let p be a prime of the form 4k + 3, $a, b \in \mathbb{Z}$, $2 \nmid a, 2 \mid b, \left(\frac{a^2 + b^2}{p}\right) = 1$ and $\left(\frac{\sqrt{a^2 + b^2}}{p}\right) = \left(\frac{a + bi}{p}\right)_4$. Then

$$\left(\frac{a+bi}{p}\right)_8 = \left(\frac{\sqrt{(x+a)/2} + \sqrt{(x-a)/2} i}{p}\right)_4,$$

where

$$x = \sqrt{a^2 + b^2}, \quad \left(\frac{\sqrt{(x+a)/2}}{p}\right) = 1 \quad and \quad \left(\frac{\sqrt{(x-a)/2}}{p}\right) = \left(\frac{2b}{p}\right).$$

Theorem 3. Let p be a prime of the form 4k+3, $a, b \in \mathbb{Z}$, $p \nmid ab$, $\left(\frac{a+bi}{p}\right)_4 = 1$. Then

$$\left(\frac{a+bi}{p}\right)_8 = \left(\frac{2b}{p}\right) \left(\frac{b+\sqrt{(a-\sqrt{a^2+b^2})^2+b^2}}{p}\right),$$

where

$$\left(\frac{\sqrt{a^2+b^2}}{p}\right) = 1$$
 and $\left(\frac{\sqrt{(a-\sqrt{a^2+b^2})^2+b^2}}{p}\right) = \left(\frac{b}{p}\right).$

Proposition 2. Let $a, b, c, d \in \mathbb{Z}$, $2 \nmid c$, $2 \mid d$, (c, d) = 1 and $(a^2 + b^2, c^2 + d^2) = 1$. Then

$$\left(\frac{a+bi}{c+di}\right)_{4}^{2} = (-1)^{\frac{c^{2}+d^{2}-1}{4}} \left(\frac{ad-bc}{c^{2}+d^{2}}\right).$$

$\S3$. The simple proofs of Burde's reciprocity law and Scholz's reciprocity law.

Let p and q be distinct primes of the form 4k + 1, and let $\varepsilon_p = (t_p + u_p \sqrt{p})/2$ and $\varepsilon_q = (t_q + u_q \sqrt{q})/2$ be the fundamental units of quadratic fields $\mathbb{Q}(\sqrt{p})$ and $\mathbb{Q}(\sqrt{q})$ respectively. Then clearly $t_p^2 - pu_p^2 = -4$ and $t_q^2 - qu_q^2 = -4$. Scholz's reciprocity law asserts that if $\left(\frac{p}{q}\right) = \left(\frac{q}{p}\right) = 1$, then

$$\left(\frac{\varepsilon_p}{q}\right) = \left(\frac{\varepsilon_q}{p}\right).$$

Now we deduce Scholz's reciprocity law from quadratic reciprocity law. Suppose $t_p + t_q = 2^{\alpha} m$ with $2 \nmid m$. Then

$$\begin{pmatrix} \frac{m}{q} \end{pmatrix} = \left(\frac{q}{|m|}\right) = \left(\frac{qu_q^2}{|m|}\right) = \left(\frac{pu_p^2 + t_q^2 - t_p^2}{|m|}\right)$$
$$= \left(\frac{pu_p^2}{|m|}\right) = \left(\frac{p}{|m|}\right) = \left(\frac{m}{p}\right).$$

Thus, if $p \equiv q \pmod{8}$, then $\left(\frac{2}{p}\right) = \left(\frac{2}{q}\right)$ and so

$$\left(\frac{t_p + t_q}{p}\right) = \left(\frac{2^{\alpha}}{p}\right) \left(\frac{m}{p}\right) = \left(\frac{2^{\alpha}}{q}\right) \left(\frac{m}{q}\right) = \left(\frac{t_p + t_q}{q}\right).$$

If $p \equiv 1 \pmod{8}$ and $q \equiv 5 \pmod{8}$, then clearly $8 \mid t_p, t_q \equiv 1 \pmod{2}$ or $t_q \equiv$ 4 (mod 8). Hence $\alpha = 0$ or 2 and so

$$\left(\frac{t_p + t_q}{p}\right) = \left(\frac{m}{p}\right) = \left(\frac{m}{q}\right) = \left(\frac{2^{\alpha}}{q}\right)\left(\frac{m}{q}\right) = \left(\frac{t_p + t_q}{q}\right).$$

By symmetry, if $p \equiv 5 \pmod{8}$ and $q \equiv 1 \pmod{8}$, we also have $\left(\frac{t_p + t_q}{p}\right) = \left(\frac{t_p + t_q}{q}\right)$. Now, by Theorem 1(1) we have

$$\begin{pmatrix} \frac{\varepsilon_p}{q} \end{pmatrix} = \left(\frac{(t_p + u_p\sqrt{p})/2}{q}\right) = \left(\frac{2}{q}\right) \left(\frac{t_p + \sqrt{pu_p^2}}{q}\right) = \left(\frac{2}{q}\right) \left(\frac{t_p + \sqrt{t_p^2 + 4}}{q}\right)$$
$$= \left(\frac{t_p + \sqrt{-4}}{q}\right) = \left(\frac{t_p + t_q}{q}\right).$$

By symmetry we also have

$$\left(\frac{\varepsilon_q}{p}\right) = \left(\frac{t_p + t_q}{p}\right).$$

Hence by the previous claim we get

$$\left(\frac{\varepsilon_p}{q}\right) = \left(\frac{t_p + t_q}{q}\right) = \left(\frac{t_p + t_q}{p}\right) = \left(\frac{\varepsilon_q}{p}\right).$$

This proves Scholz's reciprocity law.

Let p and q be distinct primes of the form 4k+1, $p = \pi \bar{\pi}$ and $q = \lambda \bar{\lambda}$, where π and λ are primary primes in $\mathbb{Z}[i]$. Burde's reciprocity law states that if $p = a^2 + b^2$, $q = c^2 + d^2$, $2 \nmid ac$ and $\left(\frac{p}{q}\right) = 1$, then

$$\left(\frac{q}{\pi}\right)_4 \left(\frac{p}{\lambda}\right)_4 = (-1)^{\frac{q-1}{4}} \left(\frac{ad-bc}{q}\right).$$

Now we use quartic reciprocity law to prove Burde's reciprocity law. Write $\pi =$ a + bi and $\lambda = c + di$. By Propositions 1, 2 and quartic reciprocity law we have

$$\left(\frac{\lambda}{\pi}\right)_4^2 \left(\frac{\lambda}{\bar{\pi}}\right)_4^2 = \left(\frac{\lambda}{p}\right)_4^2 = \left(\frac{q}{p}\right) = 1$$

and

$$\left(\frac{\bar{\lambda}}{\pi}\right)_4 \left(\frac{\bar{\pi}}{\bar{\lambda}}\right)_4 = \overline{\left(\frac{\lambda}{\bar{\pi}}\right)_4} \left(\frac{\bar{\pi}}{\bar{\lambda}}\right)_4 = \overline{\left(\frac{\lambda}{\bar{\pi}}\right)_4} \left(\frac{\lambda}{\bar{\pi}}\right)_4 \cdot \left(\frac{\lambda}{\bar{\pi}}\right)_4 \left(\frac{\bar{\pi}}{\bar{\lambda}}\right)_4 \cdot \left(\frac{\lambda}{\bar{\pi}}\right)_4^{-2}$$
$$= \left(\frac{\lambda}{\bar{\pi}}\right)_4 \left(\frac{\bar{\pi}}{\bar{\lambda}}\right)_4 \cdot \left(\frac{\lambda}{\pi}\right)_4^2 = (-1)^{\frac{p-1}{4} \cdot \frac{q-1}{4}} \cdot (-1)^{\frac{q-1}{4}} \left(\frac{ad-bc}{q}\right).$$

Thus

$$\begin{split} \left(\frac{q}{\pi}\right)_4 \left(\frac{p}{\lambda}\right)_4 &= \left(\frac{\lambda}{\pi}\right)_4 \left(\frac{\pi}{\lambda}\right)_4 \left(\frac{\bar{\lambda}}{\pi}\right)_4 \left(\frac{\bar{\pi}}{\lambda}\right)_4 \\ &= (-1)^{\frac{p-1}{4} \cdot \frac{q-1}{4}} \cdot (-1)^{\frac{p-1}{4} \cdot \frac{q-1}{4}} \cdot (-1)^{\frac{q-1}{4}} \left(\frac{ad-bc}{q}\right) \\ &= (-1)^{\frac{q-1}{4}} \left(\frac{ad-bc}{q}\right). \end{split}$$

This proves Burde's reciprocity law.