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Abstract

In this paper we continue to investigate the properties of those sequences {ay}
satisfying the condition Y"p_, (7)(—1)*ar = +a, (n > 0). As applications we deduce
some recurrence relations and congruences for Bernoulli and Euler numbers.
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1. Introduction

The classical binomial inversion formula states that a, = > p_; (})(=1)"bx (n =
0,1,2,...)ifand only if b, = >_p_, (7)(=1)*ax(n = 0,1,2,...). Following [10] we contlnue
to study those sequences {a,, } with the property >, _, (Z)( DFap = +a, (n=0,1,2,...).

Definition 1.1. If a sequence {a,} satisfies the relation

n

> <Z> (—DFap =an (n=0,1,2,...),

k=0
we say that {a,} is an even sequence. If {a,} satisfies the relation

n

k=0

we say that {a,} is an odd sequence.



From [10, T heorem 3.2] we know that {a,} is an even (odd) sequence if and only if
e v/2 > o any is an even (odd) function. Throughout this paper, ST denotes the set of
even sequences, and S~ denotes the set of odd sequences. In [10] the author stated that

{3} {<n+2,7T_1>_1}7 {<2:>2—2"}, {(—1)"/0_1 <Z>dw} € s+

Let {B,} be the Bernoulli numbers given by By = 1 and Y7, (})Be =0 (n>2). It

is well known that By = —% and Byp,41 = 0 for m > 1. Thus,
n n n—1 n
) <k> (=D (=1)"By =B + ) (k) By =(~1)"B,
k=0 k=0
and so {(—1)"B,} € ST as claimed in [10]. It is also known that > 00 ( Bpir = o

(|x| < 2m). Thus, for |z| < 2m,

x
n —2x —x x

x
—1)"(2" —1)B,— = - = :
nZ:O( A ) "nl e -1 eT—-1 eT41

Since e=*/2z/(e™® 4 1) is an odd function, We deduce that {(—-1)"(2" —1)B,} € S™.
The Euler numbers {E,} is defined by &3¢ +1 =32 EnL (|t] < 5), which is equiva-

lent to (see [4]) Ep =1, Eop—1 =0and ), _, ( ") Eor =0 (n > 1). It is clear that

E—lt > t2 t/2)"
Z ZE / Z({ﬂ)

n=0 n=0
N NPT
_et—i—l €2 =¢ 1—|—et ™).

As }%g:z - gz:—%v we see that ¢~ 2 S0 o Eat I is an odd function. Thus { £z
odd sequence.
For two numbers b and c, let {U,(b,c)} and {V,,(b,c)} be the Lucas sequences given

by

Uo(b,c) =0, Ui(b,c) =1, Upy1(b,c) = bU,(b,c) — cUp—1(b,c) (n>1)

and
Vo(b,c) =2, Vi(b,c) =b, Vpt1(b,c) =bVy(b,¢) — cVi1(b,c) (n > 1).

It is well known that (see [14])

VB2 —dexn b — 02 —de\ny .
Un(b,c) = \/1)21—74c{(bJr Z 46) _(#>} if b — dc # 0,
”(g)n_l if b2 — de =0

and Vi(b,c) = (b—l-\/l;—iélc>n+ (b—\/gz—i‘lc)n

From this one can easily see that for b # 0, {U,(b,c)/b"} is an odd sequence and
{Va(b,c)/b™} is an even sequence. We note that F,, = Uyp(1l,—1) is the Fibonacci se-
quence and n = Uy,(2,1).



Let {A,} be an even sequence or an odd sequence. In Section 2 we deduce new
recurrence formulas for {A,} and give a criterion for polynomials P,,(x) with the prop-
erty Py, (1 —x) = (—=1)"Py,(z), in Section 3 we establish a transformation formula for
> io (1) Ak, in Section 4 we give congruences for Y 7_; ! A’““ Yy ! ﬂ and Ei;g kA—fl
modulo p?, where p is an odd prime. As applications we estabhsh some recurrence for-
mulas for Bernoulli and Euler numbers. Here are some typical results:

* If {A,} is an odd sequence, then > ;_, (Z)(—l)kAgn_k = 0. If {A,} is an even
sequence, then Y ) (1) (—=1)F(2n — k) As,—p—1 = 0.

* If {Ay} is an even sequence and n is odd, then

()t E Qe

k=0

and

S0
k3|:k0 k=0

* Let m be a positive integer and Py, () = > j-, axz™ *. Then

Pu(1—2) = (—=1)™ Py <:>Z<> 1)"%(n=o,1,...,m).

n

* Let p be an odd prime, and let {Ax} be an odd sequence of rational p-integers. Then

(mod p?).

p—1
A
2Ap+1—ApEA1—pZ l;:l (mod p?) and Zp—i—k

In addition to the above notation, throughout this paper we use the following notation:
[x] —the greatest integer not exceeding x, N—the set of positive integers, R—the set of
real numbers, Z;,—the set of those rational numbers whose denominator is coprime to p,
() —the Legendre symbol.

2. Recurrence formulas for even and odd sequences

Suppose that >~ (Z)(—l)kak = +a, for n =0,1,2,.... Then clearly

n

3 TS 5 o TR

k=0

& (n) (- 1)t = ao/2 _ <n * 1) DM (ag41 — ao/2)

Pt k k+1 P k41
B _n—lle:O (n:1>( 1)"(ar —ao/2) — (ao—a0/2)>

3



= - (£ ant1 —ao/2) =F

n+1 n+1
Thus,
+ . . anp+1 — CL()/2 _
(2.1) {an} € ST implies {nap_1},{———}€S5".
n+1
When {a,} € S7, we have ayp = —ap and so ag = 0. Therefore, from the above we deduce
that
(2.2) {an} € S™ implies {nap_1},{ az—fll} e St
n

For z,y € R and n € {0,1,2,...} it is well known that ([2, (3.1)])

(61 -(00)

This is called Vandermonde’s identity. Let an, = Y j_o ("2.")(=1)" *b,—t, (n=0,1,2,.

k
Using Vandermonde’s identity we see that

k=0

" /n—m ki —k—m ,
> (") (T e b
k=0 j=0 J

Thus,

an = zn: <" ;m> (—1)"* b,y (n=0,1,2,...)

= by = zn: (n ;m) (—1)"Fan_r (n=0,1,2,...).

k=0

Lemma 2.1. Let m,p € R and >} _, (";m)(—l)”_kan,k = #+a, forn=20,1,2,....

Then

k=0

1 Any1 F ao/2

i <n _ZI){:_ m) (_1)nfkanik _ ii <Z> (_1)kan7k: for n=0,1,2,....
k=0

).



Proof. Using Vandermonde’s identity we see that

Zn: <n - ];_ m> (=)™ *ap

k=0
ey (e s (e
= {2 (e ()
= () e
= (T e
—i; (n_iz::_l)ar_ii (nl_)r>( )" "a,
— j:zn: <§)(—1)kank

k=0

So the lemma is proved.

Theorem 2.1. If {A,} is an odd sequence, then
> L) (D Ak =0 for n=0,1,2,....
k=0

If {A,} is an even sequence, forn =0,1,2,... we have

Zn: <Z> (=1)*(2n — k)Agp_r_1 = 0 and zn: (Z) (—1)* Agn—kt1 _ (=1)"4

= .
poard prt on—k+1 2(2n+1)(7?)

Moreover, for given even sequence {Ay} we also have

Z (2)(—1)]“Ank =0 for n=1,3,5,....

k=0

Proof. We first assume that {4,} is an odd sequence. Putting m = 0, p = n/2 and
an, = A, in Lemma 2.1 we see that

n n n n

> (;) ()" A ==Y <;) (—1)F A

k=0 k=0



Thus, for even n we have

> <;2;> (D) A=) <z> (-1)¥A,_ =0.

k=0 k=0

Replacing n with 2n we get > _o (1) (—=1)FAg,—, =0 for n =0,1,2,....
Now we assume that {A,} € ST. By (2.1), {nd,_1} € S~ and {A"%_fo/z} €S .
Applying the above we find that

kzo (Z) (=1)*(2n — k)Agp_p_1 = Z (Z) (—1)* A2;;Lki1k+/110/2 =0.

k=0
By [2, (1.40)],
—~(n\, .k 1 _ 1
prd (k:)( D kE+z (”:Z)z
Thus,
—~ (n\, 1 B 1 (=
kz_o<k)( 2 n+1-k  2n+1)("2h e+ 1))’

Hence

“~ (n g Aok (1) Ao
kZ:o (k) (1) m—k+1 2(2n + 1)(2:) ’

If n is odd, taking m = 0, p = n/2 and a, = A, in Lemma 2.1 we deduce that
Yo (g)(—l)kAn,k = 0. This completes the proof.

Since {Eg{ 1} is an odd sequence and Ey,_1 = 0 for k& > 1, from Theorem 2.1 we see

that > 7, (Z)(—l)kEEZ;’f,;l =0 and so

[n/2] n n k
n EQn_Qk n k;EQ’ﬂ—k' n (—1) (—1)”
S (o) s =X () evimt = () e = G

k=0 k=0 k=0
That is,
2,
(2.4) > <2k> 2% By _op = (=1)" for n=0,1,2,....
k=0

Since {(—1)"B,} is an even sequence, from Theorem 2.1 we have Y ,_, () (=1)*(2n —
k)(—1)2"*=1By, ;1 =0. As Bo,, 1 = 0 for m > 1, we obtain

[24]

(2.5) D <2r"_ 1) (20 — 21 + 1)Bon_o, =0 for n=3,4,5,....

r=1
From Theorem 2.1 we also have

"\ /n/2
(2.6) > L) Brk=0 for n=1,3,5,....

k=0



Theorem 2.2. Let {ar} be a given sequence. Then

kZ;(Z) (n_]:k> (ak_ (—1)”":2: <Iz>a5) —0 for n=0,1,2,....

Hence, if {A,} is an even sequence and n is odd, or if {A,} is an odd sequence and n is

even, then

k=0

Proof. Since (77) = (—l)k(zH,:_l), using Vandermonde’s identity we see that for
m € {0,1,...,n},

> (3 (1)

S ()= ()00

)L

£ ()C)-E 00T
S-S G (1)
> .

m
Putting aj = (—1)* A} in the above formula we obtain the remaining result.

As an example, taking A, = (—1)¥B}, in Theorem 2.2 we obtain

- k
(2.7) Z(Z)(”Z >Bk:0 for n=1,3,5,....

k=0

Let {F),} be the Fibonacci sequence given by Fy =0, F; = 1 and F,41 = F,, + Fj,—1 (n >
1). As {F,} is an odd sequence, taking Ay = F}, in Theorem 2.2 we get

"/ (n+k
(2.8) Z<k>< N )(—1)ka:0 for n=0,2,4,....
k=0
Lemma 2.2. Suppose that m is a nonnegative integer. Then

Zi: <n L 1) (~1)"*a,_p, = +a, (n=0,1,2,...)

7



if and only if

and

n n .

k=0

Proof. For n =0,1,...,m we have (7::) #0. Set A, = (—1)" A2, As ("77"71

()

(=DF() (), we see that

Thus,

(2.9) Zn: (” - T: - 1) (—1)"*ap_j, = tan < zn: (Z) (—1)% Ay = +A,.

k=0 k=0
This together with the fact that
anl (n—i—m—{—l—m—l

k ) (_1)n+m+1ikan+m+1fk
k=0

I
M=

n _
B -

Eo

Sl

0

n
( ) (_1)T+m+1a’f‘+m+1 (n = 07 17 27 c )
0

r
r—=

yields the result.

k

)(

m
n—k

Lemma 2.3. Let {a,} be a given sequence, a(x) =Y 2 apxz™ and m € R. Then

(1- :B)ma< ) = +a(x)

rz—1
- —m—1
— kZ_O (" T: >(—1)”kank = ta, (n=0,1,2,...).

Proof. Clearly, for |z| <1,

(1- x)ma<x i 1) = Z(—l)Tara:T(l —z)""

)



r=0 k=0
_ i (kz(”k <m— (2_ k))(l)k>xn

Thus the result follows.
Theorem 2.3. Let m € N, P, (z) = > 1Ly arz™ * and P(z) = Y1 axx®. Then
the following statements are equivalent:

(a) (1 — )Py (555) = £P5 (2).

(b) P(l — ) = S(~1)" Py ().
(¢) Forn=0,1,...,m we have Y ;_, ("7~ 1) (—1)"*a,_p = +an.

(d) Set a, =0 forn >m. Then > p_o ("7~ 1)( D" *a, p ==+a, (n=0,1,2,...).
(e) Forn=0,1,...,m we have

3 (k)(m) -+

k=0 k

Proof. Since P () = 2™ P (1) we see that

(=P 2) = #Pale) = ("B (1 - %) = 42" ;)
= B (1= ) < (1)
= Pp(l —z) = £(=1)"Pn(z).

So (a) and (b) are equivalent. By Lemma 2.3, (a) is equivalent to (d). Assume ap+m41 =0
for n > 0. Then

n
n _
antm+1 = 0= Z <k> (=) g 1k

k=0
m+n+1
_ Z m+n+1-—m-—1 (—1)mtn+l=kg
k m+n+1—k-

k=0

So (c) is equivalent to (d). To complete the proof, we note that (d) is equivalent to (e)
by Lemma 2.2.

Remark 2.1. Let {B,(z)} and {E,(x)} be the Bernoulli polynomials and Euler
polynomials given by

By(z) = i (Z) Brz"* and E,(z) = Zin Zn: (Z) 2z — 1)"* B,

k=0 k=0

It is well known that ([4]) Bn(1 —z) = (=1)"B,(z) and E,(1 — z) = (—1)"E,(x).



Theorem 2.4. Let {A,} € ST with Ag=...=A;_1=0and Ay #0 (1 >1). Then

An+l
{(n+1)(n+2)~-(n+l)} <5t

Proof. Assume a, = A,y;. Let a(z) = Y 7 anz™ and A(z) = Y 7 Apz™. Then
clearly A(z) = z'a(x). Since A; = Zéc:o (,i)(—l)kAk = (—1)!4; we see that 2 | I. Thus,
applying Lemma 2.3 and (2.9) we see that

)=(1—-2)A(z) a< v 1) = (1 —z)"ta(x)

{A,} € ST & A(

x—l v
. l -1)"a,
@Z(nz >(—1)nkan k=an (n=0,1,2 )@{(*l)*la }€S+
> (")
Note that
G, an, An+l

= = .
(—l—l) (”EH) m+1)(n+2)---(n+1)
We then obtain the result.
Corollary 2.1. Suppose that {a,} € ST with ag # 0 and A, = WZZ:O ag
(n>0). Then {A,} € ST.

Proof. Let by = by = 0 and b, "2 ay (n > 2). By [10, Corollary 3.2], {b,} € S™.
Now applying Theorem 2.4 we find that {%} € S*. That is, {A,} € S™.

Theorem 2.5. Let F be a given function. If {Ay,} is an even sequence, then

S () () evwe o) =0 w=012.)

k=0 s=0
If {A,} is an odd sequence, then

k

S (D)X (5) v + Fn-s) =0 =012,

k=0 s=0

Proof. Suppose that > ;_ (Z)(—l)kAk = +A, forn =0,1,2,.... From [9, Lemma
2.1] we have

(k) (1) F(n—k + r))Ak,

3 (Z) (~DF A (k) F S (‘f) (~1)*F(n—3)) =0.

k=0

This yields the result.
Corollary 2.2. If {A,} € ST, then

Z() DFA, (14 2)*1 = (—=1)"z" ) =0 for n=0,1,2,....

10



If {A,} € S™, then
> (Z) (—1)* A1+ 2)FA + (=1)"2" ") =0 for n=0,1,2,....
k=0

Proof. Taking F'(s) = (—x)® in Theorem 2.5 and then applying the binomial theorem
we obtain the result.

Remark 2.2. From [9, (2.5)] we know that

n m

> (3)vtrmen =X () 0tre .

k=0 k=0

where F(r) =3 "_ (%) (—=1)*f(s). Hence for any nonnegative integers m and n we have

210 3 (1) =3 ()0 A o (4 e 5

k=0 k=0
(2.11) -~ (" (—1)F Ajpym = — ki (—1)kAjyn for {Ag}e S

3. A transformation formula for Y} , (}) A,

Lemma 3.1 ([10, Theorems 4.1 and 4.2]). Let f be a given function and n € N.
(1) If {An} is an even sequence, then

> (1) (s - <1>"—ki (£)56) A =0

k=0

(i) If {An} is an odd sequence, then

z": <Z> (£ + (—1)”‘ks§; <’:> 1(5)) An-t = 0.

k=0

We remark that a simple proof of Lemma 3.1 was given by Wang[13].
Theorem 3.1. Let n € N. If {A,,} is an even sequence and n is odd, or if {An,} is
an odd sequence and n is even, then

" /n " n 1= /n
> (1) s 3 (p)a5 3 ()4
3|k 3n—k

Proof. Set w = (=14 +/—3)/2. If {A,,} is an even sequence and n is odd, or if {A,,}
is an odd sequence and n is even, putting f(k) = w* in Lemma 3.1 we obtain

Z <Z> (" + (=D)L + w)") Ay = 0.
k=0

11



As 14w = —w?, we have > _ (}7)(w* + w?)A,_; = 0. Therefore,

£ 0

— k=0
3|k

= Z (:) (14 o* + ) Ay — Z (n) Apk
k=0 k=0

k=

This proves the theorem.
Corollary 3.1 (Ramanujan [7]). Forn =3,5,7,... we have

n =1 d6),
Y

k=0 ifn=3,5 (mod 6).
6lk—3

Proof. As {(-1)"B,} € S*, B; =

—% and Bypy1 = 0 for m > 1, taking A, =
(=1)"B,, in Theorem 3.1 we obtain

n

kz_o <Z> ()" B,y = ;i <Z> (—1)"B, = ;(i <Z> By + n)

= k=0 k=0
3k

To see the result, we note that

n

S <Z>(_1)n_an_k - 2": (Z)Bn—k _ { —nBy=2 ifn=1 (mod6),

k=0 k=0 0 if n= 3, 5} (mod 6).
3|k 6|k—3

Corollary 3.2 (Ramanujan [7]). Forn =0,2,4,... we have

[n/6] —
1 n _
52"~ 1B, + > <6k> (2% —1)B, g =4 , O
k=0

ifn=4 (mod 6),
ifn=0,2 (mod 6).

Proof. Since {(—1)"(2" — 1)B,} is an odd sequence, By = —% and Bay,11 = 0 for
m > 1, applying Theorem 3.1 we see that for even n,

n

> (3 )eortet - n.

k=0
3|k
1 n n 1 " n
=3 kzzo (k) (-D)*@2* - 1)B, = 3(;20 <k> (28 —1)By + n)
) DBt =T L@ 1),



On the other hand, for even n,

n

Z < ) n g 2n g I)Bn—k: - Z <Z> (2n_k - 1)Bn—k
k=0 k=0
3|k 6|k
- —nBlzg if 6 | n—4,
0 if 61n— 4.

Now combining all the above yields the result.
Corollary 3.3 (Lehmer [3]). Forn =0,2,4,... we have

[n/6]

n B 14 (=3)/2
En +3 Z (6k> 26k 2En—6k; — (2)
k=1

Proof. Since {(E,, —1)/2"} is an odd sequence and F;+1 = 0, from Theorem 3.1 and
the binomial theorem we see that for even n,

"\ E,_r ~/n\ 1 "\ E,_r—1 Ep—1
> (et -2 (a2 ()5 =5 ()
6Tk0 3|_k0 3|_l<:0

S (et 0 - (D))
_1{_En—1+1—3”}:2—3"—En
AL 2n 3-2n

For even n we also have

n n .
k=0
3|k

n 1
ok . 201 k 2k
<k> 3( + W+ W)

=~ ((142)" + (1 +2w)" + (1 + 2w*)")

ol
[e=]

NGE

oo\»—lw\H

(3 + (V)" + (V)" = 53"+ 2 (=),

Hence

1 " /n 23" 3"42.(=3)7 2 n
~E, KB, = =-(1+(=3)2).
3 +Z(k> A T 3 3(1+(=3)2)

k=0
6|k
This yields the result.

Remark 3.1 Compared with known proofs of Corollaries 3.1-3.3 (see [1,3,7]), our
proofs are simple and natural.

4. Congruences involving even and odd sequences

Let p be an odd prime. For k € {1,2,...,p — 1} we see that

(41) (z) _ p(p - 1) o ]i'p — (k - 1)) = (_1)k—1% (mod p2).

13



If {A,} is an even sequence and Ao, A1,...,Ap_2,pA,_1,Ay € Z,, applying (4.1) we
see that

Zp:<> 1)F Ay, = Ay + pAy_1 — A+Z<> (=1)k A4,

1A
=Ag+pAp1—Ap—p E ?k (mod p?).
Hence

p—2
A
(4.2) 24, —pA,_ 1 = Ay — pz ?k (mod p?) for {A,} e ST.
k=1

If {A,} is an odd sequence and Ag, A1, ..., A, € Z,, using (4.1) we see that

P pl
A
—4,=3 i)(_1)kAszo—Ap—ka’“ (mod p?).
=1

(4.3)

We note that (4.3) was first obtained by Mattarei and Tauraso[5] via a complicated
method.

For an odd prime p and a € Zj, let (a), € {0,1,...p—1} be given by (a), = a (mod p).
Let p be an odd prime, a € Z, and Ao, A1, ..., Ap—1 € Zp. By [11, Theorem 2.4}, if (a),
is odd and {4, } is an even sequence, or if (a), is even and {A,} is an odd sequence, then

(4.4) pi (Z) (_lk_ a> A, =0 (mod p?).

k=0

In the case a = —%, (4.4) was given by the author in an earlier unpublished preprint.
Inspired by the author, Z.W. Sun deduced (4.4) in the cases a = —%, —i, —é. See [12,
Theorem 1.4].
Now we establish new congruences for sums involving even or odd sequences.
Theorem 4.1. Let p be an odd prime. If {A,} € ST and A1,...,Ap_2,pA, 1,4, €
Ly, then

-3
A, — pAp-1 =(p+ 14 —ppz: A1 (mod p?).
P 2 ~ k

If {A,} € S and Ay, Ag, ..., Apy1 € Zy, then

A
24,11 —Ap = A — pz ML (mod p?).

14



Proof. If {A,,} € ST, from [10, Corollary 3.1(a)] we have {24,,11 — A,} € S~. Thus,

A, — 24 1:i P (“1)k 24, 1—Ak):2§p: PY 1)k A, — A
P p+ Lk + r k + /4

k=0
- 2(A1 Ay + Z ( ) "?A,m) A,.

Hence applying (4.1) we deduce that

1 p—3
Ap = Al +pAp — p(p >Ap71 + (Z) (*1)kAk+1
k=1
p—3
= A1 +pAp — p(p2_ 1)Azofl —-bp A]]?_l (mod P2)~

k=1

This yields the first part. If {A,} € S7, from [10, Corollary 3.1(a)] we have {24,411 —
A} € ST. Thus,

2Api1 — Ap =) (Z) (—1)F(24p41 — Ag) =2 kZO <Z> (—1)F A1 + 4,

k=0
- 2(A1 i1+ Z < > kAkH) + A,

Hence applying (4.1) we obtain

p—1
A
Apt1 —Ap=A1—Ap1 + Z ( > VWA = A1 — Apa —pz l;:l (mod p?).
=1

This yields the remaining result. The proof is now complete.
Corollary 4.1. Let p be an odd prime. Then

(p—3)/2
pBp1=-p—1+2p >
k=1
Proof. Since {(-1)"B,} € ST, By = —% and Bg,,+1 = 0 for m > 1, taking 4, =
(=1)"B,, in Theorem 4.1 yields the result.
Corollary 4.2. Let p be an odd prime and b,c € Z, with b# 0 (mod p). Then

(mod p?).

2k‘

p—1
Vp(b,c) = bp<1 —pz W) (mod p?).

Proof. Since {%} € S7 and Vj(b,¢) = 2Up41(b, ¢) — bUp(b, ¢), from Theorem 4.1
we deduce the result.
Theorem 4.2. Let p be an odd prime . If {A,} € ST and Ao, A1,...,Ap—o € Zy,

then
p—2 p—2 Ak
— 2
k=0 k=0



If {A,} € S™ and Ao, A1, ..., Ap—1 € Ly, then

p—2 A
ZAk:*2Ap 1— pz k (mod p?).

Proof. Since

p—1

p— ]- - p—1—k — —
(1) Ap i = Zqufk = ZAk
k=0 )

k=0
and
p—1 p—2
1)k A - 1)*A
kZ:0<) p—1—k — pl“"z k—l—l ( ) ks

putting m = 0 and n = p — 1 in Lemma 2.1 and then applying (4.1) we see that if
{A,} € ST, then

p—2
S -
k=0

if {A,} € S7, then

—2

hS]

p — 4
— k — k 2.
(7 )0 =pY A nod 2

k=0

p—1 p—2 P p—2 A
— _ kA = - _ k 2
kZOAk_ Ap Z<k+1>( DA = —Ap pkzok+1 (mod p7).

k=0

This yields the result.
Corollary 4.3. Let p > 3 be a prime and b, c € Z,, with bc # 0 (mod p). Then

p—2

Vilb,e) (mod p?).

_p P
Vp(b,e) = 7 (k+ 1)oF

b
k=0

Proof. It is well known that Vi (b, c) = (b+7 ”52740)]‘; + (1’77 vg274¢)k' Thus,

[\

2

p— p— p—2
Vk b+\/b2 4c b— Vb2 —4c\k
=X () ()
k=0 k=0
1 (b-l—\/b2 4c)p 1 N 1— (b—\/2b;—4c)p71
1 — btvbi—dc 1 — b=vbi-dc
25 25
LA _%hay 216
- 4c bp a pp—2¢

i
o

Since {W} € ST, from the above and Theorem 4.2 we deduce the result.

Theorem 4.3. Let p be an odd prime, and let {A,} be an odd sequence. Suppose
A, Ag, ... ,Ap_l S Zp. Then

p—1 p—1

A A

?k Epz k% (mod p?).
k=1 k=1



Proof. Taking n = p — 1 in Theorem 2.2 we get > }_ ( )(p ,1€+k)(—1)kAk = 0. For
=1,2,...,p—1we Seethat

k
< >< —1+k) P-Dp-2)-(p—k plp+1)-(p+k-1)

k! k!
2 12)(p2 — 22). .. (p2 — k2
p+k k12 p+k

Since Ay = —Agp we have Ag = 0. Now, from all the above we deduce that

p—1

Ak 2 _

(4.5) =0 (modp”) for {A,}€S™.

bt k

For k=1,2,...,p — 1 we have @ = o
follows.

% — # (mod p?). Thus the result

Let F,, = U,(1,—1) and L, = V,,(1,—1) be the Fibonacci and Lucas sequences, re-
spectively. From Theorem 4.3 we have the following corollary.
Corollary 4.4. Let p > 5 be a prime. Then

S (yr(fe

1 ’ )2 (mod p?).

k=1

Proof. Recently Pan and Sun ([6, Remark 3.3]) proved that

5 1) (LY o)

It is known that ([8]) Fy =0 (mod p) and L, (z)= 2(8) (mod p?). Also, 5F, =

2Ln+1 —L,=0L,+2L,_1. Thus
5F,—(2) = 2Ly — (£ ) Ly—(z) = 2(Lp = 1) (mod p?)

and so

—~ B _ Loy

2 2
2~ 5\5 % ) (mod p°).

Since {F}} is an odd sequence, applying Theorem 4.3 we deduce the result.
Theorem 4.4. Let p be a prime greater than 3, and let {A,} be an even sequence.
Suppose that Ao, A1, ..., Ap—2, Ap,pAp—1 € Zyp. Then

2

=3
|

(mod p?).

A P2 A Ap+pA, - 24
k _p27+ p—1 p

1 & p

i

Proof. Taking n = p in Theorem 2.2 we get Y% _, (7 )(pzk)(—l)kAk = 0. For k£ =
1,2,...,p— 1 we see that

<Z> <p;;/~c) :p(p—l)--l'd(p—kJrl) . (p+1)-l%!-(p+k)

17



p (P =12)p*—2%)--(p® — k?)

p—k k12 p—k
Thus,
-2
s ()G
Ay — Ap+ Ap_1 + A
" (p P \p—1\p-1)77 ;p—k *
p
P\ (p+k
= Z <k> < " >(—1)kAk =0 (mod p?).
k=0
Hence 2 2p—1 2p—1
— A _ 2(;:1)141’_]9(571)‘4%1_140 2
i = (mod p*).
1 P p
The famous Wolstenholme’s congruence ([15]) states that (25__11) =1 (mod p3). Thus
34 24,— Ag—pA
(4.6) —kk: = L 0~ Pop=t (mod p?) for {A,}eST.
1 P p
For k =1,2,...,p — 2 we have ﬁ = k’;fig =kt = % + % (mod p?). Hence the result

follows.
Corollary 4.5. Let p > 5 be a prime. Then

—1
S Le_20-1y) (mod p?).

Proof. In [6] Pan and Sun proved that Zg;i % =0 (mod p), which was conjectured
by R. Tauraso. Since {L,} € ST, taking Ay = Ly in Theorem 4.4 we see that

p—2 p—1
Ly Ly L, 1 24+ pL, 1 —2L
- _p(z Lk p ) + p p
p
21-1,) Ly 201-1I,)

={(+1)Ly—1+ =— +
AES p p—1 p

(mod p?).

This yields the result.
Corollary 4.6. Let p be a prime greater than 3. Then

-3)/2

® % By p+l pBya+1 ,
E = - (mod p*).
— p- 2k 2 P

Proof. It is well known that By, Bi,...,By—2, Bp,pB,—1 € Z,. Taking A, = (—1)’“Bk
in (4.6) and applying the fact Bogi1 = 0 for k£ > 1 we deduce the result.
Corollary 4.7. Let p > 3 be a prime, b,c € Z, and b# 0 (mod p). Then

pi Vi(b,e) _ 2(Vy(b,c) — b)

(o — Kbk T (mod p2).

k=1

18



Proof. Taking Ay, = Vi(b,c)/b* in (4.6) yields the result.
Theorem 4.5. Let p be an odd prime and Ag, A1,...,Ap—1 € Z,. If {A,} € ST and
2

p=3 (mod4), orif {A,} € S~ and p=1 (mod 4), then

(p—1)/2
A
< ) :_0 (mod p).
k=0

Proof. Since {5} € S, by Lemma 3.1(i) we have

—1)/2
2
kz < ) Ak2"1 k
(p—1)/2

(T (e e

-1
Note that (p?) = (_k%) = (—i)k (2:) (mod p) by [2, p.90]. From the above we deduce the
result.

Theorem 4.6. Let p be an odd prime and Ao, A1,..., Ay € Zy. If {A,} is an odd
sequence, then

p=1/2 A, ,
2

_ 1P
4kk A%_k =—(-1)7 Ap 1+ (—1) 2 3 . (mod p?)
k=0 k=1
and y
(p—1)/2
2
Z <k) plkEO (mod p)
If {A,} is an even sequence, then
(p—1)/2 r-1)/2 A,
p—1 ,1p p—1_
Z (4kk)AP;1 k= (_1)p2 A% - (—1)p2 5 2 (mod p?)
k=0 k=1
and y
1)/2
A, — Ag/2 p-1_q _
d " / ——Ao + Z 4(k: ) —r (mod p)
PN _k

Proof. Putting m = 0, p = —3 in Lemma 2.1 and noting that (7,2) = (%) (—4)~" we
see that if Y1 (2)(=1)FAx = :l:A for n > 0, then

(P—l)/2( k) wP-1/2 , (r—1)/2 o2 )

k‘ -k
Z4kAp1k ( ) Aplk_iz<> Apiy,
k=0 k=0
- (r=1)/2
= +(-1)"7 (Ap - ]; - Au x)  (mod p?)



where in the last step we use the fact (“kp) %(a,f__ll)
for1<k<p-1
—1 1
Note that (p?) =(2) = (%(Qkk) (mod p). If {A4,} is an odd sequence, taking

@) = (=1)F 12 (mod p?)

4)k
n= ; in Theorem 2.1 and applying the above we deduce that ) ;~ (- 1 /2 (k: ) % =0
(mod p) Now assume that {An} is an even sequence. Since p | (}) for k=1,2,....,p—1,

we see that A, =Y F_ (2)(=1)*Ay = Ay — A4, (mod p) and so A, = Ay/2 (mod p). By
Theorem 2.1,

—-1)/2 _
S (Y a2
71 *
p N p—k P20y 2)

Since ((pfkl)ﬂ) = (") /(~=4)* (mod p), we deduce that

Ay ay) ~ (CDT A2 O (3,

— (mod p).
p((p€1)/2) k=1
It is well known that (see [8, Corollary 1.2] or [9, Theorem 5.2]) ,(f;ll)/ 2% = —2PI;2

(mod p). Thus,

- (r-1)/
<pp— 1> _ (=1 —172_)1"--(19— B _ 0 (1- pi 211)

p—1
2 2" k=1

(17 (2* —1) (mod p?).

Al — CNOVPA2 A (42— Agj2 _ Ay Ay2 -2,

1 = = P
p((plil)/2) p(l +2p — 2) b p
_ p—1 _
= A pA0/2 + A02 ; ! (mod p).

Combining all the above proves the theorem.
Ap-1 € Zp. Observe that

Added Remark. Let p be an odd prime and Ag, 41, ...
2

-3 2k - 2 2-1\ _ -1

() = (0 and () = £ (15 = £(73) = ~55p (mod ) for k € N
Putting m =0, p = —%, n= %1 in Lemma 2.1 and then applying the above we deduce
that if Y3 (2)(=1)*Ax = £A,, for n > 0, then

(r-1)/ (2k) -1/2 p -
B A=t ) (;>(1)2_k1‘1p; k
k=0 k=0
P-1/2 A, ,
— - p—1 o p b= — 2
=+(-1) 2 (Ap%l 5 ; . (mod p*)
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