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Abstract

In this paper we continue to investigate the properties of those sequences {an}
satisfying the condition

∑n
k=0

(
n
k

)
(−1)kak = ±an (n ≥ 0). As applications we deduce

some recurrence relations and congruences for Bernoulli and Euler numbers.
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1. Introduction

The classical binomial inversion formula states that an =
∑n

k=0

(
n
k

)
(−1)kbk (n =

0, 1, 2, . . .) if and only if bn =
∑n

k=0

(
n
k

)
(−1)kak(n = 0, 1, 2, . . .). Following [10] we continue

to study those sequences {an} with the property
∑n

k=0

(
n
k

)
(−1)kak = ±an (n = 0, 1, 2, . . .).

Definition 1.1. If a sequence {an} satisfies the relation

n∑

k=0

(
n

k

)
(−1)kak = an (n = 0, 1, 2, . . .),

we say that {an} is an even sequence. If {an} satisfies the relation

n∑

k=0

(
n

k

)
(−1)kak = −an (n = 0, 1, 2, . . .),

we say that {an} is an odd sequence.
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From [10, Theorem 3.2] we know that {an} is an even (odd) sequence if and only if
e−x/2

∑∞
n=0 an

xn

n! is an even (odd) function. Throughout this paper, S+ denotes the set of
even sequences, and S− denotes the set of odd sequences. In [10] the author stated that

{ 1
2n

}
,

{(
n + 2m− 1

m

)−1}
,

{(
2n

n

)
2−2n

}
,

{
(−1)n

∫ −1

0

(
x

n

)
dx

}
∈ S+.

Let {Bn} be the Bernoulli numbers given by B0 = 1 and
∑n−1

k=0

(
n
k

)
Bk = 0 (n ≥ 2). It

is well known that B1 = −1
2 and B2m+1 = 0 for m ≥ 1. Thus,

n∑

k=0

(
n

k

)
(−1)k · (−1)kBk = Bn +

n−1∑

k=0

(
n

k

)
Bk = (−1)nBn

and so {(−1)nBn} ∈ S+ as claimed in [10]. It is also known that
∑∞

n=0 Bn
xn

n! = x
ex−1

(|x| < 2π). Thus, for |x| < 2π,

∞∑

n=0

(−1)n(2n − 1)Bn
xn

n!
=

−2x

e−2x − 1
− −x

e−x − 1
=

x

e−x + 1
.

Since e−x/2x/(e−x + 1) is an odd function, we deduce that {(−1)n(2n − 1)Bn} ∈ S−.
The Euler numbers {En} is defined by 2et

e2t+1
=

∑∞
n=0 En

tn

n! (|t| < π
2 ), which is equiva-

lent to (see [4]) E0 = 1, E2n−1 = 0 and
∑n

r=0

(
2n
2r

)
E2r = 0 (n ≥ 1). It is clear that

∞∑

n=0

En − 1
2n

· tn

n!
=

∞∑

n=0

En
(t/2)n

n!
−

∞∑

n=0

(t/2)n

n!

=
2e

t
2

et + 1
− e

t
2 = e

t
2 · 1− et

1 + et

(|t| < π
)
.

As 1−e−t

1+e−t = et−1
et+1 , we see that e−

t
2
∑∞

n=0
En−1

2n · tn

n! is an odd function. Thus
{

En−1
2n

}
is an

odd sequence.
For two numbers b and c, let {Un(b, c)} and {Vn(b, c)} be the Lucas sequences given

by
U0(b, c) = 0, U1(b, c) = 1, Un+1(b, c) = bUn(b, c)− cUn−1(b, c) (n ≥ 1)

and
V0(b, c) = 2, V1(b, c) = b, Vn+1(b, c) = bVn(b, c)− cVn−1(b, c) (n ≥ 1).

It is well known that (see [14])

Un(b, c) =





1√
b2 − 4c

{(b +
√

b2 − 4c

2

)n
−

(b−√b2 − 4c

2

)n}
if b2 − 4c 6= 0,

n
( b

2
)n−1 if b2 − 4c = 0

and

Vn(b, c) =
(b +

√
b2 − 4c

2

)n
+

(b−√b2 − 4c

2

)n
.

From this one can easily see that for b 6= 0, {Un(b, c)/bn} is an odd sequence and
{Vn(b, c)/bn} is an even sequence. We note that Fn = Un(1,−1) is the Fibonacci se-
quence and n = Un(2, 1).
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Let {An} be an even sequence or an odd sequence. In Section 2 we deduce new
recurrence formulas for {An} and give a criterion for polynomials Pm(x) with the prop-
erty Pm(1 − x) = (−1)mPm(x), in Section 3 we establish a transformation formula for∑n

k=0

(
n
k

)
Ak, in Section 4 we give congruences for

∑p−1
k=1

Ak+1

k ,
∑p−1

k=1
Ak
k and

∑p−2
k=0

Ak
k+1

modulo p2, where p is an odd prime. As applications we establish some recurrence for-
mulas for Bernoulli and Euler numbers. Here are some typical results:

? If {An} is an odd sequence, then
∑n

k=0

(
n
k

)
(−1)kA2n−k = 0. If {An} is an even

sequence, then
∑n

k=0

(
n
k

)
(−1)k(2n− k)A2n−k−1 = 0.

? If {Ak} is an even sequence and n is odd, then

n∑

k=0

(n
2

k

)
(−1)kAn−k =

n∑

k=0

(
n

k

)(
n + k

k

)
(−1)kAk = 0

and
n∑

k=0
3|k

(
n

k

)
An−k =

1
3

n∑

k=0

(
n

k

)
Ak.

? Let m be a positive integer and Pm(x) =
∑m

k=0 akx
m−k. Then

Pm(1− x) = (−1)mPm(x) ⇐⇒
n∑

k=0

(
n

k

)
ak(
m
k

) = (−1)n an(
m
n

) (n = 0, 1, . . . , m).

? Let p be an odd prime, and let {Ak} be an odd sequence of rational p-integers. Then

2Ap+1 −Ap ≡ A1 − p

p−1∑

k=1

Ak+1

k
(mod p2) and

p−1∑

k=1

Ak

p + k
≡ 0 (mod p2).

In addition to the above notation, throughout this paper we use the following notation:
[x] the greatest integer not exceeding x, N the set of positive integers, R the set of
real numbers, Zp the set of those rational numbers whose denominator is coprime to p,
(a

p ) the Legendre symbol.

2. Recurrence formulas for even and odd sequences

Suppose that
∑n

k=0

(
n
k

)
(−1)kak = ±an for n = 0, 1, 2, . . . . Then clearly

n∑

k=0

(
n

k

)
(−1)kkak−1 = −n

n−1∑

r=0

(
n− 1

r

)
(−1)rar = ∓nan−1

and
n∑

k=0

(
n

k

)
(−1)k ak+1 − a0/2

k + 1
= − 1

n + 1

n∑

k=0

(
n + 1
k + 1

)
(−1)k+1(ak+1 − a0/2)

= − 1
n + 1

( n+1∑

r=0

(
n + 1

r

)
(−1)r(ar − a0/2)− (a0 − a0/2)

)
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= − 1
n + 1

(± an+1 − a0/2
)

= ∓an+1 ∓ a0/2
n + 1

.

Thus,

(2.1) {an} ∈ S+ implies {nan−1}, {an+1 − a0/2
n + 1

} ∈ S−.

When {an} ∈ S−, we have a0 = −a0 and so a0 = 0. Therefore, from the above we deduce
that

(2.2) {an} ∈ S− implies {nan−1}, { an+1

n + 1
} ∈ S+.

For x, y ∈ R and n ∈ {0, 1, 2, . . .} it is well known that ([2, (3.1)])

n∑

k=0

(
x

k

)(
y

n− k

)
=

(
x + y

n

)
.

This is called Vandermonde’s identity. Let an =
∑n

k=0

(
n−m

k

)
(−1)n−kbn−k (n = 0, 1, 2, . . .).

Using Vandermonde’s identity we see that

n∑

k=0

(
n−m

k

)
(−1)n−kan−k

=
n∑

k=0

(
n−m

k

)
(−1)n−k

n−k∑

j=0

(
n− k −m

j

)
(−1)n−k−jbn−k−j

=
n∑

s=0

(
n−m

n− s

)
(−1)s

s∑

j=0

(
s−m

j

)
(−1)s−jbs−j

=
n∑

s=0

(
n−m

n− s

) s∑

r=0

(
m− r − 1

s− r

)
br =

n∑

r=0

n∑
s=r

(
n−m

n− s

)(
m− r − 1

s− r

)
br

=
n∑

r=0

(
n− r − 1

n− r

)
br = bn (n = 0, 1, 2, . . .).

Thus,

(2.3)

an =
n∑

k=0

(
n−m

k

)
(−1)n−kbn−k (n = 0, 1, 2, . . .)

⇐⇒ bn =
n∑

k=0

(
n−m

k

)
(−1)n−kan−k (n = 0, 1, 2, . . .).

Lemma 2.1. Let m, p ∈ R and
∑n

k=0

(
n−m

k

)
(−1)n−kan−k = ±an for n = 0, 1, 2, . . . .

Then
n∑

k=0

(
n− p−m

k

)
(−1)n−kan−k = ±

n∑

k=0

(
p

k

)
(−1)kan−k for n = 0, 1, 2, . . . .
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Proof. Using Vandermonde’s identity we see that

n∑

k=0

(
n− p−m

k

)
(−1)n−kan−k

=
n∑

k=0

(
n− p−m

n− k

)
(−1)kak

= ±
n∑

k=0

(
n− p−m

n− k

)
(−1)k

k∑

r=0

(
k −m

k − r

)
(−1)rar

= ±
n∑

r=0

{ n∑

k=r

(
n− p−m

n− k

)
(−1)k−r

(
k −m

k − r

)}
ar

= ±
n∑

r=0

{ n∑

k=r

(
n− p−m

n− k

)(
m− 1− r

k − r

)}
ar

= ±
n∑

r=0

{ n−r∑

s=0

(
n− p−m

n− r − s

)(
m− 1− r

s

)}
ar

= ±
n∑

r=0

(
n− p− r − 1

n− r

)
ar = ±

n∑

r=0

(
p

n− r

)
(−1)n−rar

= ±
n∑

k=0

(
p

k

)
(−1)kan−k.

So the lemma is proved.

Theorem 2.1. If {An} is an odd sequence, then

n∑

k=0

(
n

k

)
(−1)kA2n−k = 0 for n = 0, 1, 2, . . . .

If {An} is an even sequence, for n = 0, 1, 2, . . . we have

n∑

k=0

(
n

k

)
(−1)k(2n− k)A2n−k−1 = 0 and

n∑

k=0

(
n

k

)
(−1)k A2n−k+1

2n− k + 1
=

(−1)nA0

2(2n + 1)
(
2n
n

) .

Moreover, for given even sequence {Ak} we also have

n∑

k=0

(n
2

k

)
(−1)kAn−k = 0 for n = 1, 3, 5, . . . .

Proof. We first assume that {An} is an odd sequence. Putting m = 0, p = n/2 and
an = An in Lemma 2.1 we see that

n∑

k=0

(n
2

k

)
(−1)n−kAn−k = −

n∑

k=0

(n
2

k

)
(−1)kAn−k.
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Thus, for even n we have

n/2∑

k=0

(n
2

k

)
(−1)kAn−k =

n∑

k=0

(n
2

k

)
(−1)kAn−k = 0.

Replacing n with 2n we get
∑n

k=0

(
n
k

)
(−1)kA2n−k = 0 for n = 0, 1, 2, . . ..

Now we assume that {An} ∈ S+. By (2.1), {nAn−1} ∈ S− and {An+1−A0/2
n+1 } ∈ S−.

Applying the above we find that

n∑

k=0

(
n

k

)
(−1)k(2n− k)A2n−k−1 =

n∑

k=0

(
n

k

)
(−1)k A2n−k+1 −A0/2

2n− k + 1
= 0.

By [2, (1.40)],
n∑

k=0

(
n

k

)
(−1)k 1

k + z
=

1(
n+z

n

)
z
.

Thus,
n∑

k=0

(
n

k

)
(−1)k 1

2n + 1− k
=

1
(2n + 1)

(
n−2n−1

n

) =
(−1)n

(2n + 1)
(
2n
n

) .

Hence
n∑

k=0

(
n

k

)
(−1)k A2n−k+1

2n− k + 1
=

(−1)nA0

2(2n + 1)
(
2n
n

) .

If n is odd, taking m = 0, p = n/2 and an = An in Lemma 2.1 we deduce that∑n
k=0

(n
2
k

)
(−1)kAn−k = 0. This completes the proof.

Since {En−1
2n } is an odd sequence and E2k−1 = 0 for k ≥ 1, from Theorem 2.1 we see

that
∑n

k=0

(
n
k

)
(−1)k E2n−k−1

22n−k = 0 and so

[n/2]∑

k=0

(
n

2k

)
E2n−2k

22n−2k
=

n∑

k=0

(
n

k

)
(−1)k E2n−k

22n−k
=

n∑

k=0

(
n

k

)
(−1)k

22n−k
=

(−1)n

22n
.

That is,

(2.4)
[n/2]∑

k=0

(
n

2k

)
22kE2n−2k = (−1)n for n = 0, 1, 2, . . . .

Since {(−1)nBn} is an even sequence, from Theorem 2.1 we have
∑n

k=0

(
n
k

)
(−1)k(2n −

k)(−1)2n−k−1B2n−k−1 = 0. As B2m+1 = 0 for m > 1, we obtain

(2.5)
[n+1

2
]∑

r=1

(
n

2r − 1

)
(2n− 2r + 1)B2n−2r = 0 for n = 3, 4, 5, . . . .

From Theorem 2.1 we also have

(2.6)
n∑

k=0

(
n/2
k

)
Bn−k = 0 for n = 1, 3, 5, . . . .
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Theorem 2.2. Let {ak} be a given sequence. Then

n∑

k=0

(
n

k

)(
n + k

k

)(
ak − (−1)n−k

k∑

s=0

(
k

s

)
as

)
= 0 for n = 0, 1, 2, . . . .

Hence, if {An} is an even sequence and n is odd, or if {An} is an odd sequence and n is
even, then

n∑

k=0

(
n

k

)(
n + k

k

)
(−1)kAk = 0.

Proof. Since
(−x

k

)
= (−1)k

(
x+k−1

k

)
, using Vandermonde’s identity we see that for

m ∈ {0, 1, . . . , n},
n∑

k=m

(
n−m

k −m

)
(−1)n−k

(
n + k

k

)

=
n∑

k=0

(
n−m

n− k

)
(−1)n

(−n− 1
k

)
= (−1)n

(−m− 1
n

)
=

(
m + n

n

)
.

Note that
(
n
k

)(
k
m

)
=

(
n
m

)(
n−m
k−m

)
. Applying the above we deduce that

n∑

k=0

(
n

k

)(
n + k

k

)(
ak − (−1)n−k

k∑

s=0

(
k

s

)
as

)

=
n∑

m=0

am

((
n

m

)(
n + m

m

)
−

n∑

k=m

(
n

k

)(
n + k

k

)
(−1)n−k

(
k

m

))

=
n∑

m=0

am

((
n

m

)(
n + m

m

)
−

(
n

m

) n∑

k=m

(
n−m

k −m

)
(−1)n−k

(
n + k

k

))

=
n∑

m=0

am · 0 = 0.

Putting ak = (−1)kAk in the above formula we obtain the remaining result.

As an example, taking Ak = (−1)kBk in Theorem 2.2 we obtain

(2.7)
n∑

k=0

(
n

k

)(
n + k

k

)
Bk = 0 for n = 1, 3, 5, . . . .

Let {Fn} be the Fibonacci sequence given by F0 = 0, F1 = 1 and Fn+1 = Fn + Fn−1 (n ≥
1). As {Fn} is an odd sequence, taking Ak = Fk in Theorem 2.2 we get

(2.8)
n∑

k=0

(
n

k

)(
n + k

k

)
(−1)kFk = 0 for n = 0, 2, 4, . . . .

Lemma 2.2. Suppose that m is a nonnegative integer. Then
n∑

k=0

(
n−m− 1

k

)
(−1)n−kan−k = ±an (n = 0, 1, 2, . . .)
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if and only if
n∑

k=0

(
n

k

)
ak(
m
k

) = ±(−1)n an(
m
n

) (n = 0, 1, . . . , m)

and
n∑

k=0

(
n

k

)
(−1)kak+m+1 = ±(−1)m+1an+m+1 (n = 0, 1, 2, . . .).

Proof. For n = 0, 1, . . . , m we have
(
m
n

) 6= 0. Set An = (−1)n an

(m
n) . As

(
n−m−1

k

)(
m

n−k

)
=

(−1)k
(
n
k

)(
m
n

)
, we see that

n∑

k=0

(
n−m− 1

k

)
(−1)n−kan−k

=
n∑

k=0

(
n−m− 1

k

)(
m

n− k

)
An−k =

(
m

n

) n∑

k=0

(
n

k

)
(−1)kAn−k

= (−1)n

(
m

n

) n∑

k=0

(
n

k

)
(−1)kAk.

Thus,

(2.9)
n∑

k=0

(
n−m− 1

k

)
(−1)n−kan−k = ±an ⇐⇒

n∑

k=0

(
n

k

)
(−1)kAk = ±An.

This together with the fact that

n+m+1∑

k=0

(
n + m + 1−m− 1

k

)
(−1)n+m+1−kan+m+1−k

=
n∑

k=0

(
n

k

)
(−1)n−k+m+1an−k+m+1

=
n∑

r=0

(
n

r

)
(−1)r+m+1ar+m+1 (n = 0, 1, 2, . . .)

yields the result.
Lemma 2.3. Let {an} be a given sequence, a(x) =

∑∞
n=0 anxn and m ∈ R. Then

(1− x)ma
( x

x− 1

)
= ±a(x)

⇐⇒
n∑

k=0

(
n−m− 1

k

)
(−1)n−kan−k = ±an (n = 0, 1, 2, . . .).

Proof. Clearly, for |x| < 1,

(1− x)ma
( x

x− 1

)
=

∞∑

r=0

(−1)rarx
r(1− x)m−r

8



=
∞∑

r=0

(−1)rarx
r
∞∑

k=0

(
m− r

k

)
(−x)k

=
∞∑

n=0

( n∑

k=0

(−1)n−kan−k

(
m− (n− k)

k

)
(−1)k

)
xn

=
∞∑

n=0

( n∑

k=0

(
n−m− 1

k

)
(−1)n−kan−k

)
xn.

Thus the result follows.
Theorem 2.3. Let m ∈ N, Pm(x) =

∑m
k=0 akx

m−k and P ∗
m(x) =

∑m
k=0 akx

k. Then
the following statements are equivalent:

(a) (1− x)mP ∗
m

(
x

x−1

)
= ±P ∗

m(x).
(b) Pm(1− x) = ±(−1)mPm(x).
(c) For n = 0, 1, . . . , m we have

∑n
k=0

(
n−m−1

k

)
(−1)n−kan−k = ±an.

(d) Set an = 0 for n > m. Then
∑n

k=0

(
n−m−1

k

)
(−1)n−kan−k = ±an (n = 0, 1, 2, . . .).

(e) For n = 0, 1, . . . , m we have

n∑

k=0

(
n

k

)
ak(
m
k

) = ±(−1)n an(
m
n

) .

Proof. Since P ∗
m(x) = xmPm( 1

x) we see that

(1− x)mP ∗
m

( x

x− 1

)
= ±P ∗

m(x) ⇐⇒ (−x)mPm

(
1− 1

x

)
= ±xmPm

(1
x

)

⇐⇒ (−1)mPm

(
1− 1

x

)
= ±Pm

(1
x

)

⇐⇒ Pm(1− x) = ±(−1)mPm(x).

So (a) and (b) are equivalent. By Lemma 2.3, (a) is equivalent to (d). Assume an+m+1 = 0
for n ≥ 0. Then

an+m+1 = 0 =
n∑

k=0

(
n

k

)
(−1)n−k+m+1am+1+n−k

=
m+n+1∑

k=0

(
m + n + 1−m− 1

k

)
(−1)m+n+1−kam+n+1−k.

So (c) is equivalent to (d). To complete the proof, we note that (d) is equivalent to (e)
by Lemma 2.2.

Remark 2.1. Let {Bn(x)} and {En(x)} be the Bernoulli polynomials and Euler
polynomials given by

Bn(x) =
n∑

k=0

(
n

k

)
Bkx

n−k and En(x) =
1
2n

n∑

k=0

(
n

k

)
(2x− 1)n−kEk.

It is well known that ([4]) Bn(1− x) = (−1)nBn(x) and En(1− x) = (−1)nEn(x).
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Theorem 2.4. Let {An} ∈ S+ with A0 = . . . = Al−1 = 0 and Al 6= 0 (l ≥ 1). Then
{ An+l

(n + 1)(n + 2) · · · (n + l)

}
∈ S+.

Proof. Assume an = An+l. Let a(x) =
∑∞

n=0 anxn and A(x) =
∑∞

n=0 Anxn. Then
clearly A(x) = xla(x). Since Al =

∑l
k=0

(
l
k

)
(−1)kAk = (−1)lAl we see that 2 | l. Thus,

applying Lemma 2.3 and (2.9) we see that

{An} ∈ S+ ⇔ A(
x

x− 1
) = (1− x)A(x) ⇔ a

( x

x− 1

)
= (1− x)l+1a(x)

⇔
n∑

k=0

(
n + l

k

)
(−1)n−kan−k = an (n = 0, 1, 2, . . .) ⇔

{(−1)nan(−l−1
n

)
}
∈ S+.

Note that
(−1)n an(−l−1

n

) =
an(
n+l

l

) =
An+l

(n + 1)(n + 2) · · · (n + l)
· l!.

We then obtain the result.
Corollary 2.1. Suppose that {an} ∈ S+ with a0 6= 0 and An = 1

(n+1)(n+2)

∑n
k=0 ak

(n ≥ 0). Then {An} ∈ S+.
Proof. Let b0 = b1 = 0 and bn =

∑n−2
k=0 ak (n ≥ 2). By [10, Corollary 3.2], {bn} ∈ S+.

Now applying Theorem 2.4 we find that { bn+2

(n+1)(n+2)} ∈ S+. That is, {An} ∈ S+.
Theorem 2.5. Let F be a given function. If {An} is an even sequence, then

n∑

k=0

(
n

k

)
(−1)kAk

( k∑

s=0

(
k

s

)
(−1)s(F (s)− F (n− s))

)
= 0 (n = 0, 1, 2, . . .).

If {An} is an odd sequence, then

n∑

k=0

(
n

k

)
(−1)kAk

( k∑

s=0

(
k

s

)
(−1)s(F (s) + F (n− s))

)
= 0 (n = 0, 1, 2, . . .).

Proof. Suppose that
∑n

k=0

(
n
k

)
(−1)kAk = ±An for n = 0, 1, 2, . . .. From [9, Lemma

2.1] we have

n∑

k=0

(
n

k

)
(−1)kf(k)Ak = ±

n∑

k=0

(
n

k

)( k∑

r=0

(
k

r

)
(−1)rF (n− k + r)

)
Ak,

where f(k) =
∑k

s=0

(
k
s

)
(−1)sF (s). Thus

n∑

k=0

(
n

k

)
(−1)kAk

(
f(k)∓

k∑

s=0

(
k

s

)
(−1)sF (n− s)

)
= 0.

This yields the result.
Corollary 2.2. If {An} ∈ S+, then

n∑

k=0

(
n

k

)
(−1)kAk(1 + x)k(1− (−1)nxn−k) = 0 for n = 0, 1, 2, . . . .

10



If {An} ∈ S−, then

n∑

k=0

(
n

k

)
(−1)kAk(1 + x)k(1 + (−1)nxn−k) = 0 for n = 0, 1, 2, . . . .

Proof. Taking F (s) = (−x)s in Theorem 2.5 and then applying the binomial theorem
we obtain the result.

Remark 2.2. From [9, (2.5)] we know that

n∑

k=0

(
n

k

)
(−1)kf(m + k) =

m∑

k=0

(
m

k

)
(−1)kF (n + k),

where F (r) =
∑r

s=0

(
r
s

)
(−1)sf(s). Hence for any nonnegative integers m and n we have

n∑

k=0

(
n

k

)
(−1)kAk+m =

m∑

k=0

(
m

k

)
(−1)kAk+n for {Ak} ∈ S+,(2.10)

n∑

k=0

(
n

k

)
(−1)kAk+m = −

m∑

k=0

(
m

k

)
(−1)kAk+n for {Ak} ∈ S−.(2.11)

3. A transformation formula for
∑n

k=0

(
n
k

)
An

Lemma 3.1 ([10, Theorems 4.1 and 4.2]). Let f be a given function and n ∈ N.
(i) If {An} is an even sequence, then

n∑

k=0

(
n

k

)(
f(k)− (−1)n−k

k∑

s=0

(
k

s

)
f(s)

)
An−k = 0.

(ii) If {An} is an odd sequence, then

n∑

k=0

(
n

k

)(
f(k) + (−1)n−k

k∑

s=0

(
k

s

)
f(s)

)
An−k = 0.

We remark that a simple proof of Lemma 3.1 was given by Wang[13].
Theorem 3.1. Let n ∈ N. If {Am} is an even sequence and n is odd, or if {Am} is

an odd sequence and n is even, then

n∑

k=0
3|k

(
n

k

)
An−k =

n∑

k=0
3|n−k

(
n

k

)
Ak =

1
3

n∑

k=0

(
n

k

)
Ak.

Proof. Set ω = (−1 +
√−3)/2. If {Am} is an even sequence and n is odd, or if {Am}

is an odd sequence and n is even, putting f(k) = ωk in Lemma 3.1 we obtain

n∑

k=0

(
n

k

)
(ωk + (−1)k(1 + ω)k)An−k = 0.

11



As 1 + ω = −ω2, we have
∑n

k=0

(
n
k

)
(ωk + ω2k)An−k = 0. Therefore,

3
n∑

k=0
3|k

(
n

k

)
An−k −

n∑

k=0

(
n

k

)
Ak

=
n∑

k=0

(
n

k

)
(1 + ωk + ω2k)An−k −

n∑

k=0

(
n

k

)
An−k

=
n∑

k=0

(
n

k

)
(ωk + ω2k)An−k = 0.

This proves the theorem.
Corollary 3.1 (Ramanujan [7]). For n = 3, 5, 7, . . . we have

n∑

k=0
6|k−3

(
n

k

)
Bn−k =




−n

6
if n ≡ 1 (mod 6),

n

3
if n ≡ 3, 5 (mod 6).

Proof. As {(−1)nBn} ∈ S+, B1 = −1
2 and B2m+1 = 0 for m ≥ 1, taking An =

(−1)nBn in Theorem 3.1 we obtain

n∑

k=0
3|k

(
n

k

)
(−1)n−kBn−k =

1
3

n∑

k=0

(
n

k

)
(−1)kBk =

1
3

( n∑

k=0

(
n

k

)
Bk + n

)

=
1
3
(n + Bn) =

n

3
.

To see the result, we note that

n∑

k=0
3|k

(
n

k

)
(−1)n−kBn−k −

n∑

k=0
6|k−3

(
n

k

)
Bn−k =

{
−nB1 =

n

2
if n ≡ 1 (mod 6),

0 if n ≡ 3, 5 (mod 6).

Corollary 3.2 (Ramanujan [7]). For n = 0, 2, 4, . . . we have

1
3
(2n − 1)Bn +

[n/6]∑

k=0

(
n

6k

)
(2n−6k − 1)Bn−6k =




−n

6
if n ≡ 4 (mod 6),

n

3
if n ≡ 0, 2 (mod 6).

Proof. Since {(−1)n(2n − 1)Bn} is an odd sequence, B1 = −1
2 and B2m+1 = 0 for

m ≥ 1, applying Theorem 3.1 we see that for even n,

n∑

k=0
3|k

(
n

k

)
(−1)n−k(2n−k − 1)Bn−k

=
1
3

n∑

k=0

(
n

k

)
(−1)k(2k − 1)Bk =

1
3

( n∑

k=0

(
n

k

)
(2k − 1)Bk + n

)

=
1
3
(−(−1)n(2n − 1)Bn + n) =

n

3
− 1

3
(2n − 1)Bn.
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On the other hand, for even n,
n∑

k=0
3|k

(
n

k

)
(−1)n−k(2n−k − 1)Bn−k −

n∑

k=0
6|k

(
n

k

)
(2n−k − 1)Bn−k

=

{
−nB1 =

n

2
if 6 | n− 4,

0 if 6 - n− 4.

Now combining all the above yields the result.
Corollary 3.3 (Lehmer [3]). For n = 0, 2, 4, . . . we have

En + 3
[n/6]∑

k=1

(
n

6k

)
26k−2En−6k =

1 + (−3)n/2

2
.

Proof. Since {(En− 1)/2n} is an odd sequence and E2k+1 = 0, from Theorem 3.1 and
the binomial theorem we see that for even n,

n∑

k=0
6|k

(
n

k

)
En−k

2n−k
−

n∑

k=0
3|k

(
n

k

)
1

2n−k
=

n∑

k=0
3|k

(
n

k

)
En−k − 1

2n−k
=

1
3

n∑

k=0

(
n

k

)
Ek − 1

2k

=
1
3

{ n∑

k=0

(
n

k

)
(−1)k Ek − 1

2k
+

(
1− 1

2

)n
−

(
1 +

1
2

)n}

=
1
3

{
− En − 1

2n
+

1− 3n

2n

}
=

2− 3n − En

3 · 2n
.

For even n we also have
n∑

k=0
3|k

(
n

k

)
2k =

n∑

k=0

(
n

k

)
2k · 1

3
(1 + ωk + ω2k)

=
1
3
(
(1 + 2)n + (1 + 2ω)n + (1 + 2ω2)n

)

=
1
3
(
3n + (

√−3)n + (−√−3)n
)

=
1
3
(3n + 2 · (−3)

n
2 ).

Hence

1
3
En +

n∑

k=0
6|k

(
n

k

)
2kEn−k =

2− 3n

3
+

3n + 2 · (−3)
n
2

3
=

2
3
(
1 + (−3)

n
2
)
.

This yields the result.
Remark 3.1 Compared with known proofs of Corollaries 3.1-3.3 (see [1,3,7]), our

proofs are simple and natural.

4. Congruences involving even and odd sequences

Let p be an odd prime. For k ∈ {1, 2, . . . , p− 1} we see that

(4.1)
(

p

k

)
=

p(p− 1) · · · (p− (k − 1))
k!

≡ (−1)k−1 p

k
(mod p2).
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If {An} is an even sequence and A0, A1, . . . , Ap−2, pAp−1, Ap ∈ Zp, applying (4.1) we
see that

Ap =
p∑

k=0

(
p

k

)
(−1)kAk = A0 + pAp−1 −Ap +

p−2∑

k=1

(
p

k

)
(−1)kAk

≡ A0 + pAp−1 −Ap − p

p−2∑

k=1

Ak

k
(mod p2).

Hence

(4.2) 2Ap − pAp−1 ≡ A0 − p

p−2∑

k=1

Ak

k
(mod p2) for {An} ∈ S+.

If {An} is an odd sequence and A0, A1, . . . , Ap ∈ Zp, using (4.1) we see that

−Ap =
p∑

k=0

(
p

k

)
(−1)kAk ≡ A0 −Ap − p

p−1∑

k=1

Ak

k
(mod p2).

Since A0 = −A0 we have A0 = 0 and so

(4.3)
p−1∑

k=1

Ak

k
≡ 0 (mod p) for {An} ∈ S−.

We note that (4.3) was first obtained by Mattarei and Tauraso[5] via a complicated
method.

For an odd prime p and a ∈ Zp let 〈a〉p ∈ {0, 1, . . . p−1} be given by 〈a〉p ≡ a (mod p).
Let p be an odd prime, a ∈ Zp and A0, A1, . . . , Ap−1 ∈ Zp. By [11, Theorem 2.4], if 〈a〉p
is odd and {An} is an even sequence, or if 〈a〉p is even and {An} is an odd sequence, then

(4.4)
p−1∑

k=0

(
a

k

)(−1− a

k

)
Ak ≡ 0 (mod p2).

In the case a = −1
2 , (4.4) was given by the author in an earlier unpublished preprint.

Inspired by the author, Z.W. Sun deduced (4.4) in the cases a = −1
3 ,−1

4 ,−1
6 . See [12,

Theorem 1.4].
Now we establish new congruences for sums involving even or odd sequences.
Theorem 4.1. Let p be an odd prime. If {An} ∈ S+ and A1, . . . , Ap−2, pAp−1, Ap ∈

Zp, then

Ap − pAp−1

2
≡ (p + 1)A1 − p

p−3∑

k=1

Ak+1

k
(mod p2).

If {An} ∈ S− and A1, A2, . . . , Ap+1 ∈ Zp, then

2Ap+1 −Ap ≡ A1 − p

p−1∑

k=1

Ak+1

k
(mod p2).
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Proof. If {An} ∈ S+, from [10, Corollary 3.1(a)] we have {2An+1 −An} ∈ S−. Thus,

Ap − 2Ap+1 =
p∑

k=0

(
p

k

)
(−1)k(2Ak+1 −Ak) = 2

p∑

k=0

(
p

k

)
(−1)kAk+1 −Ap

= 2
(
A1 −Ap+1 +

p−1∑

k=1

(
p

k

)
(−1)kAk+1

)
−Ap.

Hence applying (4.1) we deduce that

Ap = A1 + pAp − p(p− 1)
2

Ap−1 +
p−3∑

k=1

(
p

k

)
(−1)kAk+1

≡ A1 + pAp − p(p− 1)
2

Ap−1 − p

p−3∑

k=1

Ak+1

k
(mod p2).

This yields the first part. If {An} ∈ S−, from [10, Corollary 3.1(a)] we have {2An+1 −
An} ∈ S+. Thus,

2Ap+1 −Ap =
p∑

k=0

(
p

k

)
(−1)k(2Ak+1 −Ak) = 2

p∑

k=0

(
p

k

)
(−1)kAk+1 + Ap

= 2
(
A1 −Ap+1 +

p−1∑

k=1

(
p

k

)
(−1)kAk+1

)
+ Ap.

Hence applying (4.1) we obtain

Ap+1 −Ap = A1 −Ap+1 +
p−1∑

k=1

(
p

k

)
(−1)kAk+1 ≡ A1 −Ap+1 − p

p−1∑

k=1

Ak+1

k
(mod p2).

This yields the remaining result. The proof is now complete.
Corollary 4.1. Let p be an odd prime. Then

pBp−1 ≡ −p− 1 + 2p

(p−3)/2∑

k=1

B2k

2k − 1
(mod p2).

Proof. Since {(−1)nBn} ∈ S+, B1 = −1
2 and B2m+1 = 0 for m > 1, taking An =

(−1)nBn in Theorem 4.1 yields the result.
Corollary 4.2. Let p be an odd prime and b, c ∈ Zp with b 6≡ 0 (mod p). Then

Vp(b, c) ≡ bp
(
1− p

p−1∑

k=1

Uk+1(b, c)
kbk

)
(mod p2).

Proof. Since {Un(b,c)
bn } ∈ S− and Vp(b, c) = 2Up+1(b, c) − bUp(b, c), from Theorem 4.1

we deduce the result.
Theorem 4.2. Let p be an odd prime . If {An} ∈ S+ and A0, A1, . . . , Ap−2 ∈ Zp,

then
p−2∑

k=0

Ak ≡ p

p−2∑

k=0

Ak

k + 1
(mod p2).
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If {An} ∈ S− and A0, A1, . . . , Ap−1 ∈ Zp, then

p−2∑

k=0

Ak ≡ −2Ap−1 − p

p−2∑

k=0

Ak

k + 1
(mod p2).

Proof. Since

p−1∑

k=0

(
p− 1− p

k

)
(−1)p−1−kAp−1−k =

p−1∑

k=0

Ap−1−k =
p−1∑

k=0

Ak

and
p−1∑

k=0

(
p

k

)
(−1)kAp−1−k = Ap−1 +

p−2∑

k=0

(
p

k + 1

)
(−1)kAk,

putting m = 0 and n = p − 1 in Lemma 2.1 and then applying (4.1) we see that if
{An} ∈ S+, then

p−2∑

k=0

Ak =
p−2∑

k=0

(
p

k + 1

)
(−1)kAk ≡ p

p−2∑

k=0

Ak

k + 1
(mod p2);

if {An} ∈ S−, then

p−1∑

k=0

Ak = −Ap−1 −
p−2∑

k=0

(
p

k + 1

)
(−1)kAk ≡ −Ap−1 − p

p−2∑

k=0

Ak

k + 1
(mod p2).

This yields the result.
Corollary 4.3. Let p > 3 be a prime and b, c ∈ Zp with bc 6≡ 0 (mod p). Then

Vp(b, c) ≡ bp − pc

b

p−2∑

k=0

Vk(b, c)
(k + 1)bk

(mod p2).

Proof. It is well known that Vk(b, c) =
(

b+
√

b2−4c
2

)k +
(

b−√b2−4c
2

)k
. Thus,

p−2∑

k=0

Vk(b, c)
bk

=
p−2∑

k=0

(b +
√

b2 − 4c

2b

)k
+

p−2∑

k=0

(b−√b2 − 4c

2b

)k

=
1− ( b+

√
b2−4c
2b )p−1

1− b+
√

b2−4c
2b

+
1− ( b−√b2−4c

2b )p−1

1− b−√b2−4c
2b

=
4b2

4c

(
1− Vp(b, c)

bp

)
=

bp − Vp(b, c)
bp−2c

.

Since {Vn(b,c)
bn } ∈ S+, from the above and Theorem 4.2 we deduce the result.

Theorem 4.3. Let p be an odd prime, and let {An} be an odd sequence. Suppose
A1, A2, . . . , Ap−1 ∈ Zp. Then

p−1∑

k=1

Ak

k
≡ p

p−1∑

k=1

Ak

k2
(mod p2).
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Proof. Taking n = p− 1 in Theorem 2.2 we get
∑p−1

k=0

(
p−1
k

)(
p−1+k

k

)
(−1)kAk = 0. For

k = 1, 2, . . . , p− 1 we see that
(

p− 1
k

)(
p− 1 + k

k

)
=

(p− 1)(p− 2) · · · (p− k)
k!

· p(p + 1) · · · (p + k − 1)
k!

=
p

p + k
· (p2 − 12)(p2 − 22) · · · (p2 − k2)

k!2
≡ (−1)k p

p + k
(mod p3).

Since A0 = −A0 we have A0 = 0. Now, from all the above we deduce that

(4.5)
p−1∑

k=1

Ak

p + k
≡ 0 (mod p2) for {An} ∈ S−.

For k = 1, 2, . . . , p − 1 we have 1
k+p = k−p

k2−p2 ≡ k−p
k2 = 1

k − p
k2 (mod p2). Thus the result

follows.

Let Fn = Un(1,−1) and Ln = Vn(1,−1) be the Fibonacci and Lucas sequences, re-
spectively. From Theorem 4.3 we have the following corollary.

Corollary 4.4. Let p > 5 be a prime. Then

p−1∑

k=1

Fk

k
≡ −

(p

5

)5p

4

(Fp−( p
5
)

p

)2
(mod p2).

Proof. Recently Pan and Sun ([6, Remark 3.3]) proved that

p−1∑

k=1

Fk

k2
≡ −1

5

(p

5

)(Lp − 1
p

)2
(mod p).

It is known that ([8]) Fp−( p
5
) ≡ 0 (mod p) and Lp−( p

5
) ≡ 2(p

5) (mod p2). Also, 5Fn =
2Ln+1 − Ln = Ln + 2Ln−1. Thus

5Fp−( p
5
) = 2Lp −

(p

5

)
Lp−( p

5
) ≡ 2(Lp − 1) (mod p2)

and so
p−1∑

k=1

Fk

k2
≡ −1

5

(p

5

)(5Fp−( p
5
)

2p

)2
(mod p2).

Since {Fk} is an odd sequence, applying Theorem 4.3 we deduce the result.
Theorem 4.4. Let p be a prime greater than 3, and let {An} be an even sequence.

Suppose that A0, A1, . . . , Ap−2, Ap, pAp−1 ∈ Zp. Then

p−2∑

k=1

Ak

k
≡ −p

p−2∑

k=1

Ak

k2
+

A0 + pAp−1 − 2Ap

p
(mod p2).

Proof. Taking n = p in Theorem 2.2 we get
∑p

k=0

(
p
k

)(
p+k

k

)
(−1)kAk = 0. For k =

1, 2, . . . , p− 1 we see that
(

p

k

)(
p + k

k

)
=

p(p− 1) · · · (p− k + 1)
k!

· (p + 1) · · · (p + k)
k!

17



=
p

p− k
· (p2 − 12)(p2 − 22) · · · (p2 − k2)

k!2
≡ (−1)k p

p− k
(mod p3).

Thus,

A0 −
(

2p

p

)
Ap +

(
p

p− 1

)(
2p− 1
p− 1

)
Ap−1 +

p−2∑

k=1

p

p− k
Ak

≡
p∑

k=0

(
p

k

)(
p + k

k

)
(−1)kAk = 0 (mod p3).

Hence
p−2∑

k=1

Ak

p− k
≡

2
(
2p−1
p−1

)
Ap − p

(
2p−1
p−1

)
Ap−1 −A0

p
(mod p2).

The famous Wolstenholme’s congruence ([15]) states that
(
2p−1
p−1

) ≡ 1 (mod p3). Thus

(4.6)
p−2∑

k=1

Ak

p− k
≡ 2Ap −A0 − pAp−1

p
(mod p2) for {An} ∈ S+.

For k = 1, 2, . . . , p− 2 we have 1
k−p = k+p

k2−p2 ≡ k+p
k2 = 1

k + p
k2 (mod p2). Hence the result

follows.
Corollary 4.5. Let p > 5 be a prime. Then

p−1∑

k=1

Lk

k
≡ 2(1− Lp)

p
(mod p2).

Proof. In [6] Pan and Sun proved that
∑p−1

k=1
Lk
k2 ≡ 0 (mod p), which was conjectured

by R. Tauraso. Since {Ln} ∈ S+, taking Ak = Lk in Theorem 4.4 we see that

p−2∑

k=1

Lk

k
≡ −p

( p−1∑

k=1

Lk

k2
− Lp−1

(p− 1)2
)

+
2 + pLp−1 − 2Lp

p

≡ (p + 1)Lp−1 +
2(1− Lp)

p
≡ −Lp−1

p− 1
+

2(1− Lp)
p

(mod p2).

This yields the result.
Corollary 4.6. Let p be a prime greater than 3. Then

(p−3)/2∑

k=1

B2k

p− 2k
≡ p + 1

2
− pBp−1 + 1

p
(mod p2).

Proof. It is well known that B0, B1, . . . , Bp−2, Bp, pBp−1 ∈ Zp. Taking Ak = (−1)kBk

in (4.6) and applying the fact B2k+1 = 0 for k ≥ 1 we deduce the result.
Corollary 4.7. Let p > 3 be a prime, b, c ∈ Zp and b 6≡ 0 (mod p). Then

p−1∑

k=1

Vk(b, c)
(p− k)bk

≡ 2(Vp(b, c)− bp)
pbp

(mod p2).

18



Proof. Taking Ak = Vk(b, c)/bk in (4.6) yields the result.
Theorem 4.5. Let p be an odd prime and A0, A1, . . . , A p−1

2
∈ Zp. If {An} ∈ S+ and

p ≡ 3 (mod 4), or if {An} ∈ S− and p ≡ 1 (mod 4), then

(p−1)/2∑

k=0

(
2k

k

)
Ak

2k
≡ 0 (mod p).

Proof. Since { 1
2n } ∈ S+, by Lemma 3.1(i) we have

(p−1)/2∑

k=0

(p−1
2

k

)
(−1)kAk

2

2
p−1
2
−k

=
(p−1)/2∑

k=0

(p−1
2

k

)(
(−1)kAk − (−1)

p−1
2
−k

k∑

s=0

(
k

s

)
(−1)sAs

) 1

2
p−1
2
−k

= 0.

Note that
( p−1

2
k

) ≡ (− 1
2

k

)
= 1

(−4)k

(
2k
k

)
(mod p) by [2, p.90]. From the above we deduce the

result.
Theorem 4.6. Let p be an odd prime and A0, A1, . . . , Ap ∈ Zp. If {An} is an odd

sequence, then

(p−1)/2∑

k=0

(
2k
k

)

4k
A p−1

2
−k ≡ −(−1)

p−1
2 A p−1

2
+ (−1)

p−1
2

p

2

(p−1)/2∑

k=1

A p−1
2
−k

k
(mod p2)

and
(p−1)/2∑

k=0

(
2k

k

)
Ap−1−k

4k
≡ 0 (mod p).

If {An} is an even sequence, then

(p−1)/2∑

k=0

(
2k
k

)

4k
A p−1

2
−k ≡ (−1)

p−1
2 A p−1

2
− (−1)

p−1
2

p

2

(p−1)/2∑

k=1

A p−1
2
−k

k
(mod p2)

and
Ap −A0/2

p
≡ −A0

2p−1 − 1
p

+
(p−1)/2∑

k=1

(
2k
k

)

4k · kAp−k (mod p).

Proof. Putting m = 0, p = −1
2 in Lemma 2.1 and noting that

(− 1
2

k

)
=

(
2k
k

)
(−4)−k we

see that if
∑n

k=0

(
n
k

)
(−1)kAk = ±An for n ≥ 0, then

(p−1)/2∑

k=0

(
2k
k

)

4k
A p−1

2
−k =

(p−1)/2∑

k=0

(−1
2

k

)
(−1)kA p−1

2
−k = ±

(p−1)/2∑

k=0

(p
2

k

)
(−1)

p−1
2
−kA p−1

2
−k

≡ ±(−1)
p−1
2

(
A p−1

2
−

(p−1)/2∑

k=1

p

2k
A p−1

2
−k

)
(mod p2),
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where in the last step we use the fact
(
ap
k

)
= ap

k

(
ap−1
k−1

) ≡ ap
k

( −1
k−1

)
= (−1)k−1 ap

k (mod p2)
for 1 ≤ k ≤ p− 1.

Note that
( p−1

2
k

) ≡ (− 1
2

k

)
= 1

(−4)k

(
2k
k

)
(mod p). If {An} is an odd sequence, taking

n = p−1
2 in Theorem 2.1 and applying the above we deduce that

∑(p−1)/2
k=0

(
2k
k

)Ap−1−k

4k ≡ 0
(mod p). Now assume that {An} is an even sequence. Since p | (p

k

)
for k = 1, 2, . . . , p− 1,

we see that Ap =
∑p

k=0

(
p
k

)
(−1)kAk ≡ A0 − Ap (mod p) and so Ap ≡ A0/2 (mod p). By

Theorem 2.1,

Ap

p
+

(p−1)/2∑

k=1

(p−1
2

k

)
(−1)k Ap−k

p− k
= (−1)

p−1
2

A0/2
p
( p−1
(p−1)/2

) .

Since
((p−1)/2

k

) ≡ (
2k
k

)
/(−4)k (mod p), we deduce that

Ap

( p−1
(p−1)/2

)− (−1)(p−1)/2A0/2

p
( p−1
(p−1)/2

) ≡
(p−1)/2∑

k=1

(
2k
k

)
Ap−k

4k · k (mod p).

It is well known that (see [8, Corollary 1.2] or [9, Theorem 5.2])
∑(p−1)/2

k=1
1
k ≡ −2p−2

p
(mod p). Thus,

(
p− 1
p−1
2

)
=

(p− 1)(p− 2) · · · (p− p−1
2 )

p−1
2 !

≡ (−1)
p−1
2

(
1− p

(p−1)/2∑

k=1

1
k

)

≡ (−1)
p−1
2 (2p − 1) (mod p2).

Hence,

Ap

( p−1
(p−1)/2

)− (−1)(p−1)/2A0/2

p
( p−1
(p−1)/2

) ≡ Ap(1 + 2p − 2)−A0/2
p(1 + 2p − 2)

≡ Ap −A0/2
p

+
2p − 2

p
Ap

≡ Ap −A0/2
p

+ A0
2p−1 − 1

p
(mod p).

Combining all the above proves the theorem.
Added Remark. Let p be an odd prime and A0, A1, . . . , A p−1

2
∈ Zp. Observe that

(− 1
2

k

)
=

(
2k
k

)
(−4)−k and

(p/2
k

)
= p

2k

(p/2−1
k−1

) ≡ p
2k

( −1
k−1

)
= − (−1)k

2k p (mod p2) for k ∈ N.
Putting m = 0, p = −1

2 , n = p−1
2 in Lemma 2.1 and then applying the above we deduce

that if
∑n

k=0

(
n
k

)
(−1)kAk = ±An for n ≥ 0, then

(p−1)/2∑

k=0

(
2k
k

)

4k
A p−1

2
−k = ±

(p−1)/2∑

k=0

(p
2

k

)
(−1)

p−1
2
−kA p−1

2
−k

≡ ±(−1)
p−1
2

(
A p−1

2
− p

2

(p−1)/2∑

k=1

A p−1
2
−k

k

)
(mod p2).
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