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For real number x let [x] be the greatest integer not exceeding x.

For graph G let e(G) be the size of G, and §(G) be the minimal degree of G.

Let e(n,m,p) be the maximal size of a graph of order p in which every subgraph
with n vertices has at most m edges.

Let L be the set of some graphs, and let ex(p; L) be the maximal size of a graph
of order p not containing any graph in L.

For positive integers m and p let
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where 7 is the least nonnegative residue of p (mod m).
It is well known that ¢,,(p) is the number of edges in Turdn’s graph T,,,. So
Turan’s theorem is equivalent to the following result:
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Lemma 1. Ifp >k > 3, then
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Lemma 2. Ifp>n > 1, then
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Theorem 1 (The generalization of Turan’s theorem). Ifp >n >k > 3, then

e(n,tg—1(n);p) = t-1(p).



Corollary 1. For positive integer p we have
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Corollary 2. Ifp > n > 2m, then

Corollary 3. Ifp >k > 2, then
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Lemma 3 (Erdds, Simonovits). Let L be the set of some graphs and x(L) =
min{x(G) —1: G € L}, where x(G) is the chromatic number of G. Then
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Theorem 2. Ifk,n > 1, m > 1 and ty_1(n) < m < ty(n), and if 5,(n,m) is the
minimal degree of a graph of order p with e(n,m; p) edges in which every subgraph
with n vertices has at most m edges, then
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Conjecture 1. If p > n > 3, then there is a graph G of order p in which every
subgraph with n vertices has at most m edges such that

e(G) =e(n,m; p) and O0(G)=-e(n,m; p)—e(n,m; p—1).

Theorem 3. Ifp>n >3 and n # 4, then

( [n] ) { [£] if n is odd,
e(n,[5]; p) =
20 ¥ [2EL) if nds even.
Theorem 4. Ifp >n > 3, then
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Theorem 5. Ifp > g —1 > 2 and ey(p) is the mazimal size of a praph of order p
with girth at least g, then

eq(p) =elg—1,9—2; p).
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