J. Nanjing Univ. Math. Biquarterly 8(1991), no.1, 87-98 List of the results in the paper A CLASS OF PROBLEMS OF TURÁN TYPE

Zhi-Hong Sun

Department of Mathematics, Huaiyin Teachers College, Huaian, Jiangsu 223001, P.R. China E-mail: hyzhsun@public.hy.js.cn

For real number x let [x] be the greatest integer not exceeding x.

For graph G let e(G) be the size of G, and $\delta(G)$ be the minimal degree of G.

Let e(n, m, p) be the maximal size of a graph of order p in which every subgraph with n vertices has at most m edges.

Let L be the set of some graphs, and let ex(p; L) be the maximal size of a graph of order p not containing any graph in L.

For positive integers m and p let

$$t_m(p) = \frac{m-1}{m} \cdot \frac{p^2 - r^2}{2} + \frac{r(r-1)}{2},$$

where r is the least nonnegative residue of $p \pmod{m}$.

It is well known that $t_m(p)$ is the number of edges in Turán's graph $T_{m,p}$. So Turán's theorem is equivalent to the following result:

$$e(k, \binom{k}{2} - 1; p) = t_{k-1}(p).$$

Lemma 1. If $p > k \ge 3$, then

$$t_{k-1}(p) = \left[\frac{pt_{k-1}(p-1)}{p-2}\right].$$

Lemma 2. If p > n > 1, then

$$e(n,m;p) \le \left[\frac{e(n,m;p-1)p}{p-2}\right].$$

Theorem 1 (The generalization of Turán's theorem). If $p \ge n \ge k \ge 3$, then

$$e(n, t_{k-1}(n); p) = t_{k-1}(p).$$

Corollary 1. For positive integer p we have

$$ex(p; K_4 - x) = ex(p; K_3) = \left[\frac{p^2}{4}\right].$$

Corollary 2. If $p \ge n \ge 2m$, then

$$e(n, \binom{n}{2} - m; p) = t_{n-m}(p).$$

Corollary 3. If $p \ge k \ge 2$, then

$$\binom{p}{2} - t_k(p) = min\{\sum_{i=1}^k \binom{n_i}{2}: n_1 + \ldots + n_k = p\}.$$

Lemma 3 (Erdös, Simonovits). Let L be the set of some graphs and $\chi(L) = \min\{\chi(G) - 1 : G \in L\}$, where $\chi(G)$ is the chromatic number of G. Then

$$ex(p; L) = \left(1 - \frac{1}{\chi(L)}\right) {p \choose 2} + o(p^2).$$

Theorem 2. If k, n > 1, $m \ge 1$ and $t_{k-1}(n) \le m < t_k(n)$, and if $\delta_p(n,m)$ is the minimal degree of a graph of order p with e(n,m; p) edges in which every subgraph with n vertices has at most m edges, then

$$e(n,m; p) \sim \frac{k-2}{2(k-1)}p^2; \quad \delta_p(n,m) \sim \frac{k-2}{k-1}p \quad (p \to +\infty).$$

Conjecture 1. If $p > n \ge 3$, then there is a graph G of order p in which every subgraph with n vertices has at most m edges such that

$$e(G) = e(n,m; p)$$
 and $\delta(G) = e(n,m; p) - e(n,m; p-1).$

Theorem 3. If $p \ge n \ge 3$ and $n \ne 4$, then

$$e(n, [\frac{n}{2}]; p) = \begin{cases} [\frac{p}{2}] & \text{if } n \text{ is odd,} \\ [\frac{p+1}{2}] & \text{if } n \text{ is even.} \end{cases}$$

Theorem 4. If $p \ge n \ge 3$, then

$$e(n, n-2; p) = \left[\frac{(n-2)p}{n-1}\right].$$

Theorem 5. If $p \ge g - 1 \ge 2$ and $e_g(p)$ is the maximal size of a praph of order p with girth at least g, then

$$e_g(p) = e(g-1, g-2; p).$$