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SUPERCONGRUENCES INVOLVING EULER POLYNOMIALS

ZHI-HONG SUN

(Communicated by Matthew A. Papanikolas)

ABSTRACT. Let p > 3 be a prime, and let a be a rational p-adic integer. Let {En(x)} denote
the Euler polynomials given by 2ext

et+1
=

∑∞
n=0 En(x) tn

n!
. In this paper we show that

p−1∑

k=0

(
a

k

)(−1− a

k

)
≡ (−1)〈a〉p + (a− 〈a〉p)(p + a− 〈a〉p)Ep−3(−a) (mod p3),

p−1∑

k=0

(
a

k

)
(−2)k ≡ (−1)〈a〉p − (a− 〈a〉p)Ep−2(−a) (mod p2) for a 6≡ 0 (mod p),

where 〈a〉p ∈ {0, 1, . . . , p − 1} satisfying a ≡ 〈a〉p (mod p). Taking a = −1
3
,−1

4
,−1

6
in the

first congruence we solve some conjectures of Z.W. Sun. We also establish a congruence for∑p−1
k=0 k

(
a
k

)(−1−a
k

)
modulo p3.

1. Introduction

Let p > 3 be a prime. In 2003, based on his work concerning hypergeometric functions and
Calabi-Yau manifolds, Rodriguez-Villegas [RV] posed 22 conjectures on supercongruences. The
following congruences are 8 conjectures of Rodriguez-Villegas:

p−1∑

k=0

(
2k
k

)2

16k
≡

(−1

p

)
(mod p2),

p−1∑

k=0

(
2k
k

)(
3k
k

)

27k
≡

(−3

p

)
(mod p2),(1.1)

p−1∑

k=0

(
2k
k

)(
4k
2k

)

64k
≡

(−2

p

)
(mod p2),

p−1∑

k=0

(
3k
k

)(
6k
3k

)

432k
≡

(−1

p

)
(mod p2),(1.2)

p−1∑

k=0

(
2k
k

)3

64k
≡ 0 (mod p2) for p ≡ 3 (mod 4),(1.3)

p−1∑

k=0

(
2k
k

)2(3k
k

)

108k
≡ 0 (mod p2) for p ≡ 5 (mod 6),(1.4)
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p−1∑

k=0

(
2k
k

)2(4k
2k

)

256k
≡ 0 (mod p2) for p ≡ 5, 7 (mod 8),(1.5)

p−1∑

k=0

(
2k
k

)(
3k
k

)(
6k
3k

)

1728k
≡ 0 (mod p2) for p ≡ 3 (mod 4),(1.6)

where (a
p
) is the Legendre symbol. Here (1.1) and (1.2) were later confirmed by Mortenson

[M1-M2], (1.3) was first conjectured by Beukers [Be] in 1987 and proved by van Hamme [vH].
(1.4)-(1.6) were finally proved by Z. W. Sun [Su2]. (1.1)-(1.6) are concerned with Legendre
polynomials and elliptic curves over finite fields. See [S5, S8-S10]. For the progress on other
conjectures of Rodriguez-Villegas see [Mc].

The Bernoulli numbers {Bn} and Bernoulli polynomials {Bn(x)} are defined by

B0 = 1,
n−1∑

k=0

(
n

k

)
Bk = 0 (n ≥ 2) and Bn(x) =

n∑

k=0

(
n

k

)
Bkx

n−k (n ≥ 0).

The Euler numbers {En} and Euler polynomials {En(x)} are defined by

E0 = 1, En = −
[n/2]∑

k=1

(
n

2k

)
En−2k (n ≥ 1) and En(x) =

1

2n

n∑

k=0

(
n

k

)
(2x− 1)n−kEk,

where [a] is the greatest integer not exceeding a. It is well known that B2n+1 = 0 and E2n−1 = 0
for any positive integer n. {Bn} and {En} are important sequences and they have many
interesting properties and applications. See [EMOT], [MOS], [Sl, A000111] and [S1-S4]. By
[Sl], |E2n| is the number of permutations a1a2 · · · a2n on 1, 2, . . . , 2n such that a1 > a2 < a3 >
· · · < a2n−1 > a2n. Euler showed that (see [MOS])

∞∑
m=0

(−1)m

(2m + 1)2n+1
=

(−1)nE2n

2 · (2n)!

(π

2

)2n+1

and
m−1∑
r=0

(−1)rrn =
En(0)− (−1)mEn(m)

2
for any positive integers m and n,

and Ernvall [E] proved that

E(p−1)/2 ≡ 2h(−4p) (mod p) for any prime p ≡ 1 (mod 4),

where h(d) is the class number of the form class group consisting of classes of primitive, integral
binary quadratic forms of discriminant d.

Let p > 3 be a prime. In [Su1], using a complicated method the author’s brother Z.W. Sun
proved that

(1.7)

p−1∑

k=0

(
2k
k

)2

16k
≡

(−1

p

)
− p2Ep−3 (mod p3)

2



and conjectured that (see [Su1, Conjecture 5.12])

p−1∑

k=0

(
6k
3k

)(
3k
k

)

432k
≡

(−1

p

)
− 25

9
p2Ep−3 (mod p3),(1.8)

p−1∑

k=0

(
2k
k

)(
4k
2k

)

64k
≡

(−2

p

)
− 3

16
p2Ep−3

(1

4

)
(mod p3),(1.9)

p−1∑

k=0

(
2k
k

)(
3k
k

)

27k
≡

(−3

p

)
− p2

3
Bp−2

(1

3

)
(mod p3).(1.10)

As pointed out in [S11], we have

(1.11)

(−1
2

k

)2

=

(
2k
k

)2

16k
,

(−1
3

k

)(−2
3

k

)
=

(
2k
k

)(
3k
k

)

27k
,

(−1
4

k

)(−3
4

k

)
=

(
2k
k

)(
4k
2k

)

64k
,

(−1
6

k

)(−5
6

k

)
=

(
3k
k

)(
6k
3k

)

432k
.

Let Z be the set of integers. For a prime p let Zp denote the set of rational p − adic integers.
For a p − adic integer a let 〈a〉p ∈ {0, 1, . . . , p − 1} be given by a ≡ 〈a〉p (mod p). Let p be a
prime greater than 3 and a ∈ Zp. In [S11] the author showed that

(1.12)

p−1∑

k=0

(
a

k

)(−1− a

k

)
≡ (−1)〈a〉p (mod p2).

Taking a = −1
2
,−1

3
,−1

4
,−1

6
in (1.12) and then applying (1.11) we get (1.1)-(1.2) immediately.

In [S11], the author showed that

(1.13)

p−1∑

k=0

(
a

k

)(−1− a

k

)(
2k

k

)
1

4k
≡ 0 (mod p2) for 〈a〉p ≡ 1 (mod 2).

Taking a = −1
2
,−1

3
,−1

4
,−1

6
in (1.13) and then applying (1.11) we deduce (1.3)-(1.6).

Let p > 3 be a prime and a ∈ Zp. In this paper we improve (1.12) by showing that

(1.14)

p−1∑

k=0

(
a

k

)(−1− a

k

)
≡ (−1)〈a〉p + (a− 〈a〉p)(p + a− 〈a〉p)Ep−3(−a) (mod p3).

Taking a = −1
3
,−1

4
,−1

6
in (1.14) we deduce Z.W. Sun’s conjectures (1.8)-(1.10). We also

determine
∑p−1

k=0 k
(

a
k

)(−1−a
k

)
modulo p3 and prove that for a 6≡ 0 (mod p),

(1.15)

p−1∑

k=0

(
a

k

)
(−2)k ≡ (−1)〈a〉p − (a− 〈a〉p)Ep−2(−a) (mod p2).

Throughout this paper Hm = 1 + 1
2

+ · · ·+ 1
m

for m = 1, 2, 3, . . . .

3



2. Congruences for
∑p−1

k=0

(
a
k

)(−1−a
k

)
(mod p3)

Lemma 2.1. Let p > 3 be a prime and t ∈ Zp. Then

p−1∑

k=0

(
pt

k

)(−1− pt

k

)
≡ 1 (mod p3).

Proof. For k ∈ {1, 2, . . . , p− 1} we see that
(

pt

k

)(−1− pt

k

)
=

pt(pt− 1) · · · (pt− k + 1)(−1− pt)(−2− pt) · · · (−k − pt)

k!2

=
(−1)kpt(pt + k)

k!2
(p2t2 − 12) · · · (p2t2 − (k − 1)2)

≡ −pt(pt + k)

k2
= −p2t2

k2
− pt

k
(mod p3).

From [L] or [S2] we know that

(2.1)

p−1∑

k=1

1

k2
≡ 0 (mod p) and

p−1∑

k=1

1

k
≡ 0 (mod p2).

Thus,
p−1∑

k=0

(
pt

k

)(−1− pt

k

)
≡ 1− p2t2

p−1∑

k=1

1

k2
− pt

p−1∑

k=1

1

k
≡ 1 (mod p3).

This proves the lemma.
Lemma 2.2. Let p be an odd prime, a ∈ Zp, a 6≡ 0 (mod p) and k ∈ {1, 2, . . . , p − 2}.

Then
〈a〉p∑
r=1

(−1)r

rk
≡ −(2p−k − 1)Bp−k

p− k
+

1

2
(−1)〈a〉p+kEp−1−k(−a) (mod p).

Proof. For positive integers m and n it is well known ([MOS]) that
∑m−1

r=0 (−1)rrn =
En(0)−(−1)mEn(m)

2
. Thus,

〈a〉p∑
r=1

(−1)r

rk
≡

〈a〉p∑
r=0

(−1)rrp−1−k =
Ep−1−k(0)− (−1)〈a〉p+1Ep−1−k(〈a〉p + 1)

2
(mod p).

From [MOS] and [S6, (2.2)-(2.3)] we know that

(2.2) En(0) =
2(1− 2n+1)Bn+1

n + 1
and En(1− x) = (−1)nEn(x).

Hence,
〈a〉p∑
r=1

(−1)r

rk
≡ −(2p−k − 1)Bp−k

p− k
+

1

2
(−1)〈a〉p+kEp−1−k(−〈a〉p) (mod p).

4



Set a = 〈a〉p + pt. It is well known ([MOS]) that En(x + y) =
∑n

s=0

(
n
s

)
xsEn−s(y). Thus,

Ep−1−k(−〈a〉p) = Ep−1−k(pt− a) =

p−1−k∑
s=0

(
p− 1− k

s

)
(pt)sEp−1−k−s(−a)

≡ Ep−1−k(−a) (mod p).

We are done.
Lemma 2.3 ([S11, Lemma 4.2]). Let p be an odd prime, m ∈ {1, 2, . . . , p − 1} and

t ∈ Zp. Then (
m + pt− 1

p− 1

)
≡ pt

m
− p2t2

m2
+

p2t

m
Hm (mod p3).

Theorem 2.1. Let p > 3 be a prime and a ∈ Zp. Then

p−1∑

k=0

(
a

k

)(−1− a

k

)
≡ (−1)〈a〉p + (a− 〈a〉p)(p + a− 〈a〉p)Ep−3(−a) (mod p3).

Moreover, for a 6≡ 0 (mod p) we have

p−1∑

k=0

(
a

k

)(−1− a

k

)
≡ (−1)〈a〉p + (a− 〈a〉p)(p + a− 〈a〉p)

( 2

a2
− Ep−3(a)

)
(mod p3).

Proof. For given positive integer n set Sn(x) =
∑n

k=0

(
x
k

)(−1−x
k

)
. Since

(
x
k

)(−1−x
k

)
+(

x+1
k

)(−2−x
k

)
= 2(

(
x
k

)(−2−x
k

)− (
x

k−1

)(−2−x
k−1

)
) for k = 1, 2, . . ., we see that

Sn(x) + Sn(x + 1) = 2 + 2
n∑

k=1

((
x

k

)(−2− x

k

)
−

(
x

k − 1

)(−2− x

k − 1

))

= 2

(
x

n

)(−2− x

n

)
= 2(−1)n

(
x

n

)(
x + 1 + n

n

)
.

When a = pt ≡ 0 (mod p), from the proof of Lemma 2.2 we have Ep−3(−pt) ≡ Ep−3(0) =
2(1− 2p−2)Bp−2/(p− 2) = 0 (mod p). Thus, the result follows from Lemma 2.1. Now suppose
that a 6≡ 0 (mod p) and a = 〈a〉p + pt. Then t ∈ Zp and a− k = 〈a〉p− k + pt. From the above
identity we see that

Sn(a)− (−1)〈a〉pSn(pt)

=

〈a〉p−1∑

k=0

(−1)k(Sn(a− k − 1) + Sn(a− k)) = 2

〈a〉p−1∑

k=0

(−1)n+k

(
a− k − 1

n

)(
a− k + n

n

)
.

Hence applying Lemma 2.3 we deduce that

Sp−1(a)− (−1)〈a〉pSp−1(pt)

= 2

〈a〉p−1∑

k=0

(−1)p−1+k

(〈a〉p − k + pt− 1

p− 1

)(〈a〉p − k + p(t + 1)− 1

p− 1

)

5



≡ 2

〈a〉p−1∑

k=0

(−1)k
( pt

〈a〉p − k
− p2t2

(〈a〉p − k)2
+

p2t

〈a〉p − k
H〈a〉p−k

)

×
( p(t + 1)

〈a〉p − k
− p2(t + 1)2

(〈a〉p − k)2
+

p2(t + 1)

〈a〉p − k
H〈a〉p−k

)

≡ 2

〈a〉p−1∑

k=0

(−1)k
( p2t(t + 1)

(〈a〉p − k)2
− p3t(t + 1)(2t + 1)

(〈a〉p − k)3
+ 2

p3t(t + 1)H〈a〉p−k

(〈a〉p − k)2

)

≡ 2

〈a〉p∑
r=1

(−1)〈a〉p−r
(p2t(t + 1)

r2
− p3t(t + 1)(2t + 1)

r3
+ 2

p3t(t + 1)Hr

r2

)
(mod p4).

As B2m+1 = 0 for m ≥ 1, we see that Bp−2 = 0. Thus, by Lemma 2.2 we have
∑〈a〉p

r=1
(−1)r

r2 ≡
1
2
(−1)〈a〉pEp−3(−a) (mod p). Now, from the above and Lemma 2.1 we deduce that

Sp−1(a) ≡ (−1)〈a〉pSp−1(pt) + (−1)〈a〉p2p2t(t + 1)

〈a〉p∑
r=1

(−1)r

r2

≡ (−1)〈a〉p + p2t(t + 1)Ep−3(−a) (mod p3).

It is well known that ([MOS]) En(1 − x) = (−1)nEn(x) and En(x) + En(x + 1) = 2xn. Thus,
Ep−3(−a) = Ep−3(1+a) = 2ap−3−Ep−3(a) ≡ 2

a2−Ep−3(a) (mod p). Recall that t = (a−〈a〉p)/p.
By the above, the theorem is proved.

Taking a = −1
2

in Theorem 2.1 and then applying (1.11) and the fact En = 2nEn(1
2
) we

obtain (1.7).
For m = 3, 4, 6 it is clear that

(2.3) − 1

m
− 〈− 1

m
〉p =




− 1

m
− p− 1

m
= − p

m
if p ≡ 1 (mod m),

− 1

m
− (m− 1)p− 1

m
= −(m− 1)p

m
if p ≡ −1 (mod m)

and so

(2.4)
(
− 1

m
− 〈− 1

m
〉p

)(
p− 1

m
− 〈− 1

m
〉p

)
= − p

m
· (m− 1)p

m
= −m− 1

m2
p2.

Corollary 2.1. Let p > 3 be a prime. Then

p−1∑

k=0

(
6k
3k

)(
3k
k

)

432k
≡

(−1

p

)
− 25

9
p2Ep−3 (mod p3).

Proof. Taking a = −1
6

in Theorem 2.1 and then applying (1.11) and (2.4) we see that

p−1∑

k=0

(
6k
3k

)(
3k
k

)

432k

6



=

p−1∑

k=0

(−1
6

k

)(−5
6

k

)
≡ (−1)〈−

1
6
〉p +

(
− 1

6
− 〈− 1

6

〉
p

)(
p− 1

6
− 〈− 1

6

〉
p

)
Ep−3

(1

6

)

≡
(−1

p

)
− 5

36
Ep−3

(1

6

)
(mod p3).

By [S6, Theorem 2.1 and Lemma 2.1], we have 62nE2n(1
6
) = 32n+1

2
E2n. Thus, Ep−3(

1
6
) = 1

6p−3 ·
3p−3+1

2
Ep−3 ≡ 20Ep−3 (mod p). Hence the result follows.

In [S7] the author introduced the sequence {Un} given by

U0 = 1 and Un = −2

[n/2]∑

k=1

(
n

2k

)
Un−2k (n ≥ 1).

Clearly U2n−1 = 0. For any prime p > 3, in [S7] the author proved that
∑[2p/3]

k=1
(−1)k−1

k
≡

3p(p
3
)Up−3 (mod p2).

Corollary 2.2. Let p > 3 be a prime. Then

p−1∑

k=0

(
2k
k

)(
3k
k

)

27k
≡

(−3

p

)
− 2p2Up−3 (mod p3).

Proof. Taking a = −1
3

in Theorem 2.1 and then applying (1.11) and (2.4) we see that

p−1∑

k=0

(
2k
k

)(
3k
k

)

27k

=

p−1∑

k=0

(−1
3

k

)(−2
3

k

)
≡ (−1)〈−

1
3
〉p +

(
− 1

3
− 〈− 1

3

〉
p

)(
p− 1

3
− 〈− 1

3

〉
p

)
Ep−3

(1

3

)

=
(−3

p

)
− 2

9
Ep−3

(1

3

)
(mod p3).

By [S7, Theorem 2.1], U2n = 32nE2n(1
3
). Thus, Up−3 = 3p−3Ep−3(

1
3
) ≡ 1

9
Ep−3(

1
3
) (mod p). Now

putting all the above together we obtain the result.
Remark 2.1. Let p > 3 be a prime. By [S7, p.217], Bp−2(

1
3
) ≡ 6Up−3 (mod p). Thus,

from Corollary 2.2 we deduce (1.10). In [MT], Mattarei and Tauraso proved that
∑p−1

k=0

(
2k
k

) ≡
(−3

p
)− p2

3
Bp−2(

1
3
) (mod p3). This together with Corollary 2.2 yields

p−1∑

k=0

(
2k
k

)(
3k
k

)

27k
≡

p−1∑

k=0

(
2k

k

)
≡

(−3

p

)
− 2p2Up−3 (mod p3).

In [S3] the author introduced the sequence {Sn} given by S0 = 1 and Sn = 1−∑n−1
k=0

(
n
k

)
22n−2k−1Sk (n ≥

1), and showed that Sn = 4nEn(1
4
).

7



Corollary 2.3. Let p > 3 be a prime. Then

p−1∑

k=0

(
2k
k

)(
4k
2k

)

64k
≡

(−2

p

)
− 3p2Sp−3 (mod p3).

Proof. Taking a = −1
4

in Theorem 2.1 and then applying (1.11) and (2.4) we see that

p−1∑

k=0

(
2k
k

)(
4k
2k

)

64k

=

p−1∑

k=0

(−1
4

k

)(−3
4

k

)
≡ (−1)〈−

1
4
〉p +

(
− 1

4
− 〈− 1

4

〉
p

)(
p− 1

4
− 〈− 1

4

〉
p

)
Ep−3

(1

4

)

=
(−2

p

)
− 3

16
Ep−3

(1

4

)
(mod p3).

Since Sp−3 = 4p−3Ep−3(
1
4
) ≡ 1

16
Ep−3(

1
4
) (mod p), we obtain the result.

Lemma 2.4. For any nonnegative integer n we have

n∑

k=0

(k − a(a + 1))

(
a

k

)(−1− a

k

)
= −a(a + 1)

(
a− 1

n

)(−2− a

n

)
.

Proof. Observe that

− a(a + 1)
{(

a− 1

n + 1

)(−2− a

n + 1

)
−

(
a− 1

n

)(−2− a

n

)}

=

(
a

n + 1

)(−1− a

n + 1

)
((a− n− 1)(−2− a− n)− (n + 1)2)

= (n + 1− a(a + 1))

(
a

n + 1

)(−1− a

n + 1

)
.

The result can be easily proved by induction on n.
Theorem 2.2. Let p > 3 be a prime and a ∈ Zp with a 6≡ 0,−1 (mod p). Then

p−1∑

k=0

k

(
a

k

)(−1− a

k

)
≡ (−1)〈a〉pa(a + 1) + p2t(t + 1)

(
a(a + 1)Ep−3(−a)− 1

)
(mod p3),

where t = (a− 〈a〉p)/p.
Proof. By Lemma 2.3, we have

(
a−1
p−1

)
=

(〈a〉p+pt−1
p−1

) ≡ pt
〈a〉p (mod p2) and

(−2− a

p− 1

)
=

(
p− 1− 〈a〉p − p(t + 1)− 1

p− 1

)
≡ p(−t− 1)

p− 1− 〈a〉p ≡
p(t + 1)

〈a〉p + 1
(mod p2).

Thus, (
a− 1

p− 1

)(−2− a

p− 1

)
≡ t(t + 1)

〈a〉p(〈a〉p + 1)
p2 ≡ t(t + 1)

a(a + 1)
p2 (mod p3).
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Hence, using Lemma 2.4 we see that

(2.5)

p−1∑

k=0

k

(
a

k

)(−1− a

k

)
− a(a + 1)

p−1∑

k=0

(
a

k

)(−1− a

k

)

= −a(a + 1)

(
a− 1

p− 1

)(−2− a

p− 1

)
≡ −p2t(t + 1) (mod p3).

This together with Theorem 2.1 yields the result.
Theorem 2.3. Let p > 3 be a prime. Then

p−1∑

k=0

k
(
6k
3k

)(
3k
k

)

432k
≡ − 5

36

(−1

p

)
+

5

324
p2(9 + 25Ep−3) (mod p3),

p−1∑

k=0

k
(
2k
k

)(
3k
k

)

27k
≡ −2

9

(−3

p

)
+

2

9
p2(1 + 2Up−3) (mod p3),

p−1∑

k=0

k
(
2k
k

)(
4k
2k

)

64k
≡ − 3

16

(−2

p

)
+

3

16
p2(1 + 3Sp−3) (mod p3).

Proof. Taking a = −1
6
,−1

3
,−1

4
in (2.5) and then applying (1.11) and Corollaries 2.1-2.3 we

deduce the result.
Remark 2.2. For any prime p > 3, in [Su3, Corollary 1.2 (with x = 1)] Z.W. Sun obtained

congruences for
∑p−1

k=0

k(2k
k )(3k

k )
27k ,

∑p−1
k=0

k(2k
k )(4k

2k)
64k and

∑p−1
k=0

k(6k
3k)(

3k
k )

432k modulo p2.

3. A congruence for
∑p−1

k=0

(
a
k

)
(−2)k (mod p2)

For given positive integer n and variables a and x define

Sn(a, x) =
n∑

k=0

(
a

k

)
xk.

As
(

a
k

)
=

(
a−1

k

)
+

(
a−1
k−1

)
for k ≥ 1, we see that

Sn(a, x) = 1 +
n∑

k=1

(
a− 1

k

)
xk +

n∑

k=1

(
a− 1

k − 1

)
xk

= Sn(a− 1, x) + x
(
Sn(a− 1, x)−

(
a− 1

n

)
xn

)
.

Thus,

(3.1) Sn(a, x)− (1 + x)Sn(a− 1, x) = −
(

a− 1

n

)
xn+1.

9



Therefore,

Sn(a, x)− (1 + x)〈a〉pSn(a− 〈a〉p, x)

=

〈a〉p∑

k=1

(1 + x)k−1(Sn(a− k + 1, x)− (1 + x)Sn(a− k, x)) = −
〈a〉p∑

k=1

(1 + x)k−1

(
a− k

n

)
xn+1.

Note that
(

a−k
n

)
= (−1)n

(
k−a+n−1

n

)
. We then obtain

(3.2) Sn(a, x)− (1 + x)〈a〉pSn(a− 〈a〉p, x) = (−x)n+1

〈a〉p∑

k=1

(1 + x)k−1

(
n− a + k − 1

n

)
.

Let p be an odd prime, a ∈ Zp and a = 〈a〉p + pt. Then t ∈ Zp. For 1 ≤ k ≤ 〈a〉p ≤ n ≤ p− 1
we see that

(
n− a + k − 1

n

)

=
(n− 〈a〉p + k − 1− pt) · · · (1− pt)(−pt)(−1− pt) · · · (−(〈a〉p − k)− pt)

n!

≡ (n− 〈a〉p + k − 1)!(−pt)(−1)〈a〉p−k(〈a〉p − k)!

n!
= −pt · (−1)〈a〉p−k

n
(

n−1
〈a〉p−k

) (mod p2).

Thus,

Sn(a, x)− (1 + x)〈a〉pSn(pt, x) ≡ −pt
(−x)n+1

n

〈a〉p∑

k=1

(1 + x)k−1 (−1)〈a〉p−k

(
n−1
〈a〉p−k

)

= −pt
(−x)n+1

n

〈a〉p−1∑
r=0

(1 + x)〈a〉p−1−r (−1)r

(
n−1

r

) (mod p2).

Since

Sn(pt, x) = 1 +
n∑

k=1

pt

k

(
pt− 1

k − 1

)
xk ≡ 1− pt

n∑

k=1

(−x)k

k
(mod p2),

for a, x ∈ Zp, 1 ≤ 〈a〉p ≤ n ≤ p− 1 and x 6≡ −1 (mod p) we have

(3.3)

Sn(a, x) ≡ (1 + x)〈a〉p − (a− 〈a〉p)(1 + x)〈a〉p
( n∑

k=1

(−x)k

k

− (−x)n+1

n

〈a〉p−1∑

k=0

1(
n−1

k

)
(−1− x)k+1

)
(mod p2).

Suppose that p is an odd prime, a ∈ Zp and a = 〈a〉p + pt 6≡ 0 (mod p). Taking n = p− 1
in (3.1) and then applying Lemma 2.3 we see that

Sp−1(a, x)− (x + 1)Sp−1(a− 1, x)

10



= −
(〈a〉p + pt− 1

p− 1

)
xp ≡

(
− pt

〈a〉p +
p2t2

〈a〉2p
− p2t

〈a〉p H〈a〉p
)
xp (mod p3).

For 1 ≤ k ≤ 〈a〉p we have 〈a−k +1〉p = 〈a〉p−k +1 and so a−k +1 = 〈a−k +1〉p + pt. Thus,

Sp−1(a, x)− (x + 1)〈a〉pSp−1(a− 〈a〉p, x)

=

〈a〉p∑

k=1

(x + 1)k−1(Sp−1(a− k + 1, x)− (x + 1)Sp−1(a− k, x))

≡
〈a〉p∑

k=1

(x + 1)k−1xp
(
− pt

〈a〉p − k + 1
+

p2t2

(〈a〉p − k + 1)2
− p2t

〈a〉p − k + 1
H〈a〉p−k+1

)

= xp

〈a〉p∑
r=1

(x + 1)〈a〉p−r
(
− pt

r
+

p2t2

r2
− p2t

r
Hr

)

= ptxp(x + 1)〈a〉p
(
−

〈a〉p∑
r=1

1

r(x + 1)r
+ pt

〈a〉p∑
r=1

1

r2(x + 1)r
− p

〈a〉p∑
r=1

Hr

r(x + 1)r

)
(mod p3).

Define H0 = 0. For k ∈ {1, 2, . . . , p− 1} we see that

(
p

k

)
=

p

k
· (p− 1) · · · (p− (k − 1))

(k − 1)!
≡ p

k
(−1)k−1(1− pHk−1) (mod p3)

and so (−1)k−1

k
≡ 1

p

(
p
k

)
+ p (−1)k−1

k
Hk−1 (mod p2). Hence

p−1∑

k=1

(−x)k

k
≡ −

p−1∑

k=1

xk
(1

p

(
p

k

)
+ p

(−1)k−1

k
Hk−1

)

= −1

p
((1 + x)p − 1− xp) + p

p−1∑

k=1

(−x)k

k
Hk−1 (mod p2).

Therefore

Sp−1(pt, x)

= 1 +

p−1∑

k=1

pt

k
· (pt− 1) · · · (pt− (k − 1))

(k − 1)!
xk ≡ 1 +

p−1∑

k=1

pt

k
(−1)k−1(1− ptHk−1)x

k

= 1 + pt(t− 1)

p−1∑

k=1

(−x)k

k
+ t2

p−1∑

k=1

(−1)k−1 p

k
(1− pHk−1)x

k

≡ 1 + pt(t− 1)

p−1∑

k=1

(−x)k

k
+ t2

p−1∑

k=1

(
p

k

)
xk

≡ 1 + t(t− 1)
(
− ((1 + x)p − 1− xp) + p2

p−1∑

k=1

(−x)k

k
Hk−1

)
+ t2((1 + x)p − 1− xp)
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= 1 + t((1 + x)p − 1− xp) + p2t(t− 1)

p−1∑

k=1

(−x)k

k
Hk−1 (mod p3).

Now, from the above we deduce that

(3.4)

Sp−1(a, x) ≡ (x + 1)〈a〉p
(
1 + t((1 + x)p − 1− xp) + p2t(t− 1)

p−1∑

k=1

(−x)k

k
Hk−1

)

+ ptxp(x + 1)〈a〉p
(
−

〈a〉p∑
r=1

1

r(x + 1)r
+ pt

〈a〉p∑
r=1

1

r2(x + 1)r
− p

〈a〉p∑
r=1

Hr

r(x + 1)r

)
(mod p3).

Lemma 3.1. Let p be an odd prime, a, x ∈ Zp, a(x + 1) 6≡ 0 (mod p) and t = (a−〈a〉p)/p.
Then

p−1∑

k=0

(
a

k

)
xk ≡ (x + 1)〈a〉p

(
1 + t((1 + x)p − 1− xp)− ptx

〈a〉p∑
r=1

1

r(x + 1)r

)

≡ (x + 1)〈a〉p
(
1 + t((1 + x)p − 1− xp) + tx

〈a〉p∑
r=1

(
p

r

)(
− 1

x + 1

)r)
(mod p2).

Proof. For r ∈ {1, 2, . . . , p− 1} we have
(

p
r

)
= p

r

(
p−1
r−1

) ≡ (−1)r−1

r
p (mod p2). Thus,

−p

〈a〉p∑
r=1

1

r(x + 1)r
=

〈a〉p∑
r=1

(−1)r−1

r
p
(
− 1

x + 1

)r

≡
〈a〉p∑
r=1

(
p

r

)(
− 1

x + 1

)r

(mod p2).

Now the result follows from (3.4).
Theorem 3.1. Let p be an odd prime, a ∈ Zp and a 6≡ 0 (mod p). Then

p−1∑

k=0

(
a

k

)
(−2)k ≡ (−1)〈a〉p − (a− 〈a〉p)Ep−2(−a) (mod p2).

Proof. Set qp(2) = (2p−1 − 1)/p and t = (a− 〈a〉p)/p. Taking x = −2 in Lemma 3.1 we see
that

p−1∑

k=0

(
a

k

)
(−2)k ≡ (−1)〈a〉p(1 + t((−1)p − 1− (−2)p))− pt(−2)p(−1)〈a〉p

〈a〉p∑
r=1

(−1)r

r
(mod p2).

It is well known that pBp−1 ≡ p− 1 (mod p). Thus, from Lemma 2.2 we deduce that

〈a〉p∑
r=1

(−1)r

r
≡ −qp(2)pBp−1

p− 1
+

1

2
(−1)〈a〉p+1Ep−2(−a)

≡ −qp(2)− 1

2
(−1)〈a〉pEp−2(−a) (mod p).
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Now combining all the above we deduce that

p−1∑

k=0

(
a

k

)
(−2)k ≡ (−1)〈a〉p(1 + 2ptqp(2)) + 2pt(−1)〈a〉p

(
− qp(2)− 1

2
(−1)〈a〉pEp−2(−a)

)

= (−1)〈a〉p − ptEp−2(−a) (mod p2).

This proves the theorem.
Theorem 3.2. Let p > 3 be a prime. Then

p−1∑

k=0

(−1/3

k

)
(−2)k ≡

(−3

p

)
+

3− (−3
p

)

3
(2p−1 − 1) (mod p2).

Proof. Taking a = −1
3

in Theorem 3.1 and then applying (2.3) we see that

p−1∑

k=0

(−1/3

k

)
(−2)k

≡ (−1)〈−
1
3
〉p −

(
− 1

3
− 〈− 1

3

〉
p

)
Ep−2

(1

3

)
=

(−3

p

)
−

(−3
p

)− 3

6
pEp−2

(1

3

)
(mod p2).

From [MOS] we know that B2n

(
1
3

)
= 3−32n

2·32n B2n. Now applying [S6, Lemma 2.2] and the well
known fact pBp−1 ≡ p− 1 (mod p) we deduce that

Ep−2

(1

3

)

=
2

p− 1
((−2)p−1 − 1)Bp−1

(1

3

)
=

2

p− 1
(2p−1 − 1) · 3− 3p−1

2 · 3p−1
Bp−1 ≡ 2

2p−1 − 1

p
(mod p).

Thus the result follows.
Remark 3.1 In [Su1], Z.W. Sun proved that for any odd prime p,

p−1∑

k=0

(
2k
k

)

2k
=

p−1∑

k=0

(−1/2

k

)
(−2)k ≡

(−1

p

)
− p2Ep−3 (mod p3).

This can be deduced from (3.4).
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