J. Nanjing Univ. 27(1991), Special Issue, 43-50, 146 List of the main results in the paper MAXIMUM SIZE OF GRAPHS WITH GIRTH NOT LESS THAN A GIVEN NUMBER

Zhi-Hong Sun

Department of Mathematics, Huaiyin Teachers College, Huaian, Jiangsu 223001, P.R. China E-mail: hyzhsun@public.hy.js.cn

For graph G let e(G) be the number of edges in G (the size of G), and let $\delta(G)$ and $\Delta(G)$ be the minimal degree and maximal degree of G respectively.

For $g \ge 3$ let $e_g(p)$ be the maximal size of a graph of order p with girth at least g.

Theorem 1. For positive integer p we have

$$e_5(p) \le \frac{1}{2}p\sqrt{p-1}.$$

Theorem 2. If G is a simple graph of order p with girth ≥ 7 and $\delta(G) = \delta \geq 1$, then

$$e(G) \le \frac{p}{4} \Big\{ \frac{\delta^2 - 1}{2\delta - 1} + \frac{1}{2\delta - 1} \sqrt{(\delta^2 - 1)^2 + 4(2\delta - 1)(p - 1)} \Big\}.$$

Theorem 3. Let G be a simple graph of order p with girth ≥ 7 , x = 2e(G)/p, $\Delta(G) = \Delta$ and $\delta(G) = \delta \geq 1$. Then

$$2mx^3 - x^2 + x - (p-1) \le 0,$$

where $m = \delta \Delta / (\Delta^2 + \delta^2)$.

Corollary 4. Let G be a simple graph of order p with girth ≥ 7 , $\delta(G) = \delta \geq 1$ and $\Delta(G) = \Delta$. Then

$$e(G) < \left(\frac{p}{2}\right)^{\frac{4}{3}} \sqrt[3]{\left(1+\frac{1}{\delta}\right)\left(\frac{\Delta}{\delta}+\frac{\delta}{\Delta}\right)}.$$

Theorem 4. For $r \geq 2$ we have

$$e_{2r+1}(p) < \frac{r}{r+1}p^{1+\frac{1}{r}} + p.$$

Corollary 5. For $p \ge 3$ and g > 3 we have

$$e_g(p) \le \frac{p}{p-2}e_g(p-1).$$