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Congruences for (A+
√

A2 + mB2)
p−1
2 and (b+

√
a2 + b2)

p−1
4 (mod p)

by

ZHI-HONG SUN (Huaian)

Abstract. Let Z be the set of integers, and let p be an odd prime.

In the paper we use the quadratic reciprocity law to determine (A +√
A2 + mB2)

p−1
2 (mod p) for A, B, m ∈ Z, and use Western’s formula to

determine (b+
√

a2 + b2)
p−1
4 (mod p) provided that p = x2+(a2+b2)y2 ≡

1 (mod 8), a, b, x, y ∈ Z, 2 - a, 4 | b and a2 + b2 is a prime.

1. Introduction.
Let Z and N be the sets of integers and positive integers respectively,

i =
√−1 and Z[i] = {a + bi | a, b ∈ Z}. For a, b ∈ Z, a + bi is called

primary if b ≡ 0 (mod 2) and a ≡ 1−b (mod 4). When π or −π is primary
in Z[i] and α ∈ Z[i], one can define the quartic Jacobi symbol

(
α
π

)
4

as in
[S2,S4]. For the properties of the quartic Jacobi symbol one may consult
[IR], [S4, (2.1)-(2.8)] and [S6, Propositions 2.1-2.6].

For any positive integer m and a ∈ Z let ( a
m ) be the Legendre-Jacobi-

Kronecker symbol. (We also assume (a
1 ) = 1.) For our convenience we

also define ( a
−m ) = ( a

m ). Then for any two odd numbers m and n we have
the following general quadratic reciprocity law:

(1.1)
(m

n

)
=

{
(−1)

m−1
2 ·n−1

2
(

n
m

)
if m > 0 or n > 0,

−(−1)
m−1

2 ·n−1
2

(
n
m

)
if m < 0 and n < 0.

Let a,m, A,B,C, D ∈ Z and let p be an odd prime such that ap = C2 +

mD2. In Section 2 we obtain congruences for
(

A+
√

A2+mB2

2

) p−1
2 (mod p)

using only the quadratic reciprocity law. This generalizes the result for
m = 1 in [S5]. For example, if p = C2 +2D2 is a prime of the form 8k +1,
then

(3±
√

17)
p−1
2 ≡

{ (
2C+3D

17

)
(mod p) if

(
p
17

)
= 1,

(
2C+3D

17

) (3∓√17)D
2C (mod p) if

(
p
17

)
= −1.
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Suppose that p is a prime of the form 8k + 1. In Section 3, using West-
ern’s formula for octic residues we determine (b +

√
a2 + b2)

p−1
4 (mod p)

provided that p = x2 + (a2 + b2)y2 6= a2 + b2, a, b, x, y ∈ Z, 2 - a, 4 | b and
a2 + b2 is a prime. See Theorems 3.1 and 3.2. For instance, if p 6= 17 is a
prime of the form 8k + 1 and so p = C2 + 2D2 for some C, D ∈ Z, then

(4±
√

17)
p−1
4 ≡ 1 (mod p)

⇐⇒ p = x2 + 17y2(x, y ∈ Z) and (−1)y =
(2C − 3D

17

)
.

For b, c ∈ Z the Lucas sequences {Un(b, c)} and {Vn(b, c)} are defined
by

U0(b, c) = 0, U1(b, c) = 1, Un+1(b, c) = bUn(b, c)− cUn−1(b, c) (n ≥ 1)

and

V0(b, c) = 2, V1(b, c) = b, Vn+1(b, c) = bVn(b, c)− cVn−1(b, c) (n ≥ 1).

Let d = b2 − 4c. It is well known that for n ∈ N,

(1.2) Un(b, c) =

{
1√
d

{(
b+
√

d
2

)n − (
b−
√

d
2

)n}
if d 6= 0,

n( b
2 )n−1 if d = 0

and

(1.3) Vn(b, c) =
(b +

√
d

2

)n

+
(b−

√
d

2

)n

.

Let p be an odd prime. In Section 2 we obtain a criterion for U p−1
4

(2A,

−mB2) ≡ 0 (mod p) (if p ≡ 1 (mod 4)) in terms of binary quadratic forms,
in Section 3 we derive a criterion for p | U p−1

8
(2b,−a2) (if p ≡ 1 (mod 8),

2 - a, 4 | b and a2 +b2 is a prime), and in Section 4 we pose five conjectures
concerning V p+1

4
(k,−1) (mod p) (if p ≡ 3 (mod 4)) and q[p/8] (mod p) (if

p ≡ 1 (mod 4) and q ≡ 3 (mod 4)), where [x] is the greatest integer not
exceeding x.

Throughout the paper we use (m,n) to denote the greatest common
divisor of integers m and n.

2. Congruences for (A+
√

A2+mB2

2 )
p−1
2 (mod p).

For complex numbers A,B, C, D and m it is clear that

(2.1) (A2 + mB2)(C2 + mD2) = (AC −mBD)2 + m(AD + BC)2.
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Lemma 2.1. Suppose A,B, C, D, m ∈ Z, A2 +mB2 6= 0, C2 +mD2 > 1,
(A,B) = (C, D) = 1, 2 - C2 + mD2 and (A2 + mB2, C2 + mD2) = 1. Let

δ0 =
{

1 if A2 + mB2 > 0 or AD + BC > 0,
−1 if A2 + mB2 < 0 and AD + BC < 0.

Then

δ0

( AD + BC

C2 + mD2

)

=





(−1)
AD+BC

2 m
(

AD+BC
A2+mB2

)
if AD + BC ≡ 0 (mod 2),

(
AD+BC
A2+mB2

)
if AD + BC ≡ 1 (mod 4),

(−1)[
m
2 ]D

(−AD−BC
A2+mB2

)
if AD + BC ≡ 3 (mod 4).

Proof. If q is a prime such that q | (AD + BC,C2 + mD2), then
D2(A2 + mB2) ≡ B2C2 + mB2D2 = B2(C2 + mD2) ≡ 0 (mod q). As
(A2 + mB2, C2 + mD2) = 1, we have q - A2 + mB2 and hence q | D.
Thus, C2 ≡ −mD2 ≡ 0 (mod q) and so q | C. Since (C, D) = 1, this is
impossible. Therefore, (AD + BC,C2 + mD2) = 1. By the symmetry, we
also have (AD + BC,A2 + mB2) = 1.

Suppose AD + BC = 2α1n1(2 - n1) and A2 + mB2 = 2αn(2 - n). By
(1.1) and (2.1) we obtain

( AD + BC

C2 + mD2

)( 2α1

C2 + mD2

)

=
( n1

C2 + mD2

)
= (−1)

n1−1
2 ·C2+mD2−1

2

(C2 + mD2

n1

)

= (−1)
n1−1

2 ·C2+mD2−1
2

(A2 + mB2

n1

)( (A2 + mB2)(C2 + mD2)
n1

)

= (−1)
n1−1

2 ·C2+mD2−1
2

(2αn

n1

)( (AC −mBD)2 + m(AD + BC)2

n1

)

= (−1)
n1−1

2 ·C2+mD2−1
2

( 2
n1

)α( n

n1

)( (AC −mBD)2

n1

)

= (−1)
n1−1

2 ·C2+mD2−1
2

( 2
n1

)α

δ0(−1)
n1−1

2 ·n−1
2

(n1

n

)

= δ0(−1)
n1−1

2 ·C2+mD2−n
2

( 2
n1

)α( 2
n

)α1
(AD + BC

n

)
.

Hence

(2.2)
δ0

( AD + BC

C2 + mD2

)

= (−1)
n1−1

2 · (C2+mD2)n−1
2

( 2
(C2 + mD2)n

)α1
( 2

n1

)α(AD + BC

n

)
.
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If 2 | AD + BC, as (AD + BC,A2 + mB2) = 1 we have 2 - A2 + mB2.
Thus, α = 0, n = A2 + mB2 and 2 - (C2 + mD2)n. By (2.1) we have

(C2 + mD2)n

= (A2 + mB2)(C2 + mD2) = (AC −mBD)2 + m(AD + BC)2

≡
{

1 (mod 8) if AD + BC ≡ 0 (mod 4),
1 + 4m (mod 8) if AD + BC ≡ 2 (mod 4).

Thus,

(−1)
n1−1

2 · (C2+mD2)n−1
2

( 2
(C2 + mD2)n

)α1

=
( 2

(C2 + mD2)n

)α1

=
{

1 if AD + BC ≡ 0 (mod 4),(
2

1+4m

)
= (−1)m if AD + BC ≡ 2 (mod 4).

Hence, by (2.2) we deduce the result.
Now assume AD+BC ≡ 1 (mod 4). Then α1 = 0 and n1 = AD+BC ≡

1 (mod 4). Observe that

( 2
n1

)α(AD + BC

n

)
=

( 2
AD + BC

)α(AD + BC

n

)

=
(AD + BC

2

)α(AD + BC

n

)
=

( AD + BC

A2 + mB2

)
.

By (2.2) we deduce the result.
Finally we assume AD + BC ≡ 3 (mod 4). Then A(−D) + B(−C) ≡

1 (mod 4). From the above we deduce

δ0

( AD + BC

C2 + mD2

)
= (−1)

C2+mD2−1
2

(A(−D) + B(−C)
A2 + mB2

)
.

As (C,D) = 1 and 2 - C2 +mD2, we see that C2+mD2−1
2 ≡ [m

2 ]D (mod 2).
So the result follows. The proof is now complete.

Lemma 2.2. Let C, D, m ∈ Z with (C, D) = 1 and C2+mD2 ∈ {3, 5, 7, . . . }.
Then

( D

C2 + mD2

)
=





1 if 4 | D,

(−1)m if 4 | D − 2,

(−1)
D−1

2 ·[ m
2 ] if 2 - D.
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Proof. Set D = 2αD0(2 - D0). If 4 | D, then C2 + mD2 ≡ C2 ≡
1 (mod 8) and so

( D

C2 + mD2

)
=

( D0

C2 + mD2

)
=

(C2 + mD2

D0

)
=

(C2

D0

)
= 1.

If 4 | D − 2, then C2 + mD2 ≡ 1 + 4m (mod 8) and so

( D

C2 + mD2

)
=

( 2D0

C2 + mD2

)
=

( 2
1 + 4m

)(C2 + mD2

D0

)
= (−1)m.

If 2 - D, then

( D

C2 + mD2

)

= (−1)
D−1

2 ·C2+mD2−1
2

(C2 + mD2

D

)
= (−1)

D−1
2 ·C2+mD2−1

2

(C2

D

)

= (−1)
D−1

2 ·C2+m−1
2 = (−1)

D−1
2 ·[ m

2 ].

So the lemma is proved.

Lemma 2.3. Let b, c ∈ Z and n ∈ N. Let p be an odd prime such that
p - c(b2 − 4c). Then

p | Un(b, c) ⇐⇒
(b +

√
b2 − 4c

2

)2n

≡ cn (mod p).

Proof. From (1.2) we have

p | Un(b, c) ⇐⇒
(b +

√
b2 − 4c

2

)n

≡
(b−√b2 − 4c

2

)n

(mod p)

⇐⇒
(b +

√
b2 − 4c

2

)2n

≡
(b2 − (b2 − 4c)

4

)n

= cn (mod p).

This proves the lemma.
For complex numbers A,B and m it is clear that

(2.3) (A + B
√−m)

A +
√

A2 + mB2

2
=

(A + B
√−m +

√
A2 + mB2

2

)2

.

Now using Lemmas 2.1-2.3 and (2.3) we deduce the following main
result.
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Theorem 2.1. Let p be an odd prime, a,m, C,D ∈ Z, a > 0, 2 - a, (C, D)
= 1 and ap = C2 + mD2. Let A,B ∈ Z with (A,B) = 1, p - mB and
(A2 + mB2, ap) = 1. Suppose that δ0 is given in Lemma 2.1. Let

δ1 =

{
(−1)

D
2 m if 2 | D,

(−1)
D−1

2 ·[ m
2 ] if 2 - D,

δ2 =





1 if AD + BC ≡ 0, 1 (mod 4),
(−1)m if AD + BC ≡ 2 (mod 4),

(−1)[
m
2 ]D if AD + BC ≡ 3 (mod 4),

and

ε =

{
δ0δ1δ2( AD+BC

A2+mB2 ) if AD + BC 6≡ 3 (mod 4),

δ0δ1δ2(−AD−BC
A2+mB2 ) if AD + BC ≡ 3 (mod 4).

Then

(A±√A2 + mB2

2

) p−1
2

≡
{

ε(D(AD+BC)
a ) (mod p) if (A2+mB2

p ) = 1,

ε(D(AD+BC)
a )D(A∓√A2+mB2)

BC (mod p) if (A2+mB2

p ) = −1.

Moreover, if p ≡ 1 (mod 4), then

p | U p−1
4

(2A,−mB2)

⇐⇒
(A2 + mB2

p

)
= 1 and ε

(D(AD + BC)
a

)
=

(2BCD

p

)
.

Proof. As (−m
p ) = 1 and (

√
x)p =

√
x · x p−1

2 ≡ (x
p )
√

x (mod p) for
x ∈ Z, using the binomial theorem and Fermat’s little theorem we see that

(A + B
√−m +

√
A2 + mB2)p

≡ Ap + (B
√−m)p + (

√
A2 + mB2)p

≡ A + B
√−m +

(A2 + mB2

p

)√
A2 + mB2 (mod p).
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Thus, (A + B
√−m +

√
A2 + mB2

2

)p−1

≡ (A + B
√−m +

√
A2 + mB2)p

A + B
√−m +

√
A2 + mB2

≡
A + B

√−m +
(

A2+mB2

p

)√
A2 + mB2

A + B
√−m +

√
A2 + mB2

=

{
A−√A2+mB2

B
√−m

(mod p) if
(

A2+mB2

p

)
= −1,

1 (mod p) if
(

A2+mB2

p

)
= 1.

Hence applying (2.3) we obtain

(A + B
√−m)

p−1
2

(A +
√

A2 + mB2

2

) p−1
2

≡
{

A−√A2+mB2

B
√−m

(mod p) if
(

A2+mB2

p

)
= −1,

1 (mod p) if
(

A2+mB2

p

)
= 1.

As ( C
D )2 ≡ −m (mod p), substituting

√−m with C
D in the congruence we

have (A +
√

A2 + mB2

2

) p−1
2

(
A +

BC

D

) p−1
2

≡
{

A−√A2+mB2

BC/D (mod p) if
(

A2+mB2

p

)
= −1,

1 (mod p) if
(

A2+mB2

p

)
= 1.

Using Lemmas 2.1 and 2.2 we have

(A + BC/D)
p−1
2 ≡

(A + BC/D

p

)
=

(D

p

)(AD + BC

p

)

=
(D

a

)(AD + BC

a

)( D

ap

)(AD + BC

ap

)

=
(D

a

)(AD + BC

a

)( D

C2 + mD2

)( AD + BC

C2 + mD2

)

= ε
(D(AD + BC)

a

)
(mod p).

Now combining the above we deduce

(A +
√

A2 + mB2

2

) p−1
2

≡
{

ε(D(AD+BC)
a ) (mod p) if (A2+mB2

p ) = 1,

ε(D(AD+BC)
a )D(A−√A2+mB2)

BC (mod p) if (A2+mB2

p ) = −1.
7



Since ap = C2 + mD2 we see that (−m
p ) = 1 and so

(A +
√

A2 + mB2

2

) p−1
2

(A−√A2 + mB2

2

) p−1
2

=
(− mB2

4
) p−1

2 ≡ 1 (mod p).

We also have

D(A +
√

A2 + mB2)
BC

· D(A−√A2 + mB2)
BC

=
−mB2D2

B2C2
≡ 1 (mod p).

Thus, we also have

(A−√A2 + mB2

2

) p−1
2

≡
{

ε(D(AD+BC)
a ) (mod p) if (A2+mB2

p ) = 1,

ε(D(AD+BC)
a )D(A+

√
A2+mB2)
BC (mod p) if (A2+mB2

p ) = −1.

Now we assume p ≡ 1 (mod 4). From the above and Lemma 2.3 we see
that

p | U p−1
4

(2A,−mB2)

⇐⇒ (A +
√

A2 + mB2)
p−1
2 ≡ (−mB2)

p−1
4 ≡

(BC

D

) p−1
2

(mod p)

⇐⇒
(A +

√
A2 + mB2

2

) p−1
2 ≡

(2BCD

p

)
(mod p)

⇐⇒
(2BCD

p

)
ε
(D(AD + BC)

a

)

≡
{

1 (mod p) if (A2+mB2

p ) = 1,
D(A−√A2+mB2)

BC (mod p) if (A2+mB2

p ) = −1.

Since p - mB(A2 + mB2) we have A 6≡ ±√A2 + mB2 (mod p) and so
A2 + mB2 −A

√
A2 + mB2 6≡ 0 (mod p). Thus

(D(A−√A2 + mB2)
BC

)2

≡ 2A2 + mB2 − 2A
√

A2 + mB2

−mB2
6≡ 1 (mod p)

and so
(D(A−√A2+mB2)

BC

) 6≡ ±1 (mod p). Hence,

p | U p−1
4

(2A,−mB2)

⇐⇒
(A2 + mB2

p

)
= 1 and ε

(D(AD + BC)
a

)
=

(2BCD

p

)
.

8



The proof is now complete.
Remark 2.1 From (2.1) we see that (AD +BC,AC −mBD) = 1 implies
(AD + BC, (A2 + mB2)(C2 + mD2)) = 1. Thus, according to the proof
of Lemma 2.1, we may replace the condition (A2 + mB2, C2 + mD2) = 1
with (AD + BC,AC − mBD) = 1 in Lemma 2.1. Hence, by the proof
of Theorem 2.1, we may replace the condition (A2 + mB2, ap) = 1 with
(AD + BC,AC −mBD) = 1 in Theorem 2.1.

Corollary 2.1. Let p be an odd prime, m ∈ {2, 4, 6, . . . } and p = C2 +
mD2 for some C, D ∈ Z. Suppose A,B ∈ Z, (A,B) = 1, p - B(A2 + mB2)
and AD + BC 6≡ 3 (mod 4). Then

(A±√A2 + mB2

2

) p−1
2

≡





(−1)
1−(−1)D

2 ·D−1
2 ·m

2 ( AD+BC
A2+mB2 ) (mod p) if (A2+mB2

p ) = 1,

(−1)
1−(−1)D

2 ·D−1
2 ·m

2 ( AD+BC
A2+mB2 )D(A∓√A2+mB2)

BC (mod p)

if (A2+mB2

p ) = −1.

Moreover, if p ≡ 1 (mod 4), then

p | U p−1
4

(2A,−mB2)

⇔
(A2 + mB2

p

)
= 1 and (−1)

1−(−1)D

2 ·D−1
2 ·m

2

( AD + BC

A2 + mB2

)
=

(2B

p

)(m

C

)
.

Proof. For p ≡ 1 (mod 4) we have (C
p ) = ( p

C ) = (C2+mD2

C ) = (m
C ) and

(D
p ) = ( p

D ) = (C2+mD2

D ) = (C2

D ) = 1. Thus, taking a = 1 in Theorem 2.1
we deduce the result.

Corollary 2.2. Let p be a prime of the form 8k +1 and so p = C2 +2D2

for some C, D ∈ Z. Suppose A,B ∈ Z, (A,B) = 1, p - B(A2 + 2B2) and
AD + BC 6≡ 3 (mod 4). Then

(
A±

√
A2 + 2B2

) p−1
2

≡
{ (

AD+BC
A2+2B2

)
(mod p) if

(
p

A2+2B2

)
= 1,

(
AD+BC
A2+2B2

)D(A∓√A2+2B2)
BC (mod p) if

(
p

A2+2B2

)
= −1.

Moreover, if p ≡ 1 (mod 4), then

p | U p−1
4

(2A,−2B2) ⇔
( p

A2 + 2B2

)
= 1 and

(AD + BC

A2 + 2B2

)
=

(B

p

)( 2
C

)
.
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Proof. If 2 - D, then p = C2 + 2D2 ≡ 1 + 2 = 3 (mod 8). Thus 2 | D.
Now putting m = 2 in Corollary 2.1 and noting that

(
A2+2B2

p

)
=

(
p

A2+2B2

)
we deduce the result.

For instance, if p = C2 + 2D2 is a prime of the form 8k + 1, then

(2.4) (3±
√

17)
p−1
2 ≡

{ (
2C+3D

17

)
(mod p) if

(
p
17

)
= 1,

(
2C+3D

17

) (3∓√17)D
2C (mod p) if

(
p
17

)
= −1

and

(2.5)
p | U p−1

4
(3,−2) ⇐⇒ p | U p−1

4
(6,−8)

⇐⇒
( p

17

)
= 1 and

(2C + 3D

17

)
=

( 2
C

)
.

Corollary 2.3. Let p ≡ 1, 3, 7, 9 (mod 20) be a prime different from 7.
(i) If p ≡ 1, 9 (mod 20) and hence p = C2 + 5D2 with C,D ∈ Z and

C + D ≡ 1 (mod 4), then

(1±√6
2

) p−1
2 ≡

{
δ1

(
C+D

6

)
(mod p) if

(
6
p

)
= 1,

δ1

(
C+D

6

)
D
C (1∓√6) (mod p) if

(
6
p

)
= −1

and

p | U p−1
4

(2,−5) ⇐⇒
(6

p

)
= 1 and δ1

(C + D

6
)

= (−1)
p−1
4 D

(C

5

)
,

where δ1 = 1 or −1 according as 4 - D − 2 or 4 | D − 2.
(ii) If p ≡ 3, 7 (mod 20) and hence 7p = C2 + 5D2 with C,D ∈ Z and

C + D ≡ 1 (mod 4), then

(1±√6
2

) p−1
2 ≡

{
δ1

(
C+D

6

)(D(C+D)
7

)
(mod p) if

(
6
p

)
= 1,

δ1

(
C+D

6

)(D(C+D)
7

)
D
C (1∓√6) (mod p) if

(
6
p

)
= −1,

where δ1 = 1 or −1 according as 4 - D − 2 or 4 | D − 2.

Proof. If p = C2 + 5D2 with C, D ∈ Z and D = 2αD0(2 - D0), then
clearly (C

p ) = ( p
C ) = ( 5

C ) = (C
5 ) and (2D

p ) = ( 2α+1

p )(D0
p ) = ( 2

p )α+1( p
D0

) =

(−1)
p−1
4 (α+1) = (−1)

p−1
4 D. Thus, putting a = A = B = 1 and m = 5

in Theorem 2.1 we deduce (i). Taking a = 7, A = B = 1 and m = 5 in
Theorem 2.1 we deduce (ii).

10



Corollary 2.4. Let p ≡ 1, 2, 4 (mod 7) be an odd prime and hence p =
C2 + 7D2 for some C,D ∈ Z. Suppose C + D ≡ 1 (mod 4). Then

(1± 2
√

2)
p−1
2

≡
{

(−1)
D(D−1)

2 + C+D−1
4 (mod p) if p ≡ ±1 (mod 8),

(−1)
D(D−1)

2 + C+D−1
4 D

C (−1± 2
√

2) (mod p) if p ≡ ±3 (mod 8).

Moreover, if p ≡ 1 (mod 4), then

p | U p−1
4

(2,−7) ⇐⇒ 8 | p− 1 and (−1)
D(D−1)

2 + C+D−1
4 = (−1)

C−1
2

(C

7

)
.

Proof. Taking a = A = B = 1 and m = 7 in Theorem 2.1 we obtain
the congruence for (1 ± 2

√
2)

p−1
2 (mod p). For p ≡ 1 (mod 8) and D =

2αD0(2 - D0), it is clear that

2 - C,
(C

p

)
=

( p

C

)
=

(C2 + 7D2

C

)
=

( 7
C

)
= (−1)

C−1
2

(C

7

)

and (D

p

)
=

(D0

p

)
=

( p

D0

)
=

(C2 + 7D2

D0

)
=

(C2

D0

)
= 1.

Thus, by Theorem 2.1 we have

p | U p−1
4

(2,−7)

⇐⇒ 8 | p− 1 and (−1)
D(D−1)

2 + C+D−1
4 =

(2CD

p

)
= (−1)

C−1
2

(C

7

)
.

This completes the proof.

Corollary 2.5. Let p ≡ 1, 3 (mod 8) be a prime and hence p = C2 +2D2

for some C,D ∈ Z.
(i) If p ≡ 1 (mod 8) and C + D ≡ 1 (mod 4), then

(2±
√

3)
p−1
4 ≡

{
(−1)

C2−1
8

(
C
3

)
(mod p) if p ≡ 1 (mod 24),

(−1)
C2−1

8
(

D
3

)
D
C (1∓√3) (mod p) if p ≡ 17 (mod 24)

and so
p | U p−1

8
(4, 1) ⇐⇒

(C

3

)
= (−1)

C2−1
8 .

(ii) If p ≡ 3 (mod 8), p > 3 and C ≡ D ≡ 1 (mod 4), then

(2±
√

3)
p+1
4 ≡

{
(−1)

C−1
4

(
C
3

)
(mod p) if p ≡ 19 (mod 24),

(−1)
C−1

4
(

D
3

)
D
C (1±√3) (mod p) if p ≡ 11 (mod 24).
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Proof. If p ≡ 1 (mod 8), then 2 | D. If p ≡ 3 (mod 8), then 2 - D.
Thus, putting a = A = B = 1 and m = 2 in Corollary 2.1 we see that

(1±√3
2

) p−1
2 ≡

{ (
C+D

3

)
(mod p) if

(
3
p

)
= 1,

(
C+D

3

)
D
C (1∓√3) (mod p) if

(
3
p

)
= −1.

If p ≡ 1 (mod 3), then 3 | D and
(

3
p

)
= (−1)

p−1
2

(
p
3

)
= (−1)

p−1
2 . If

p ≡ 2 (mod 3), then 3 | C and
(

3
p

)
= (−1)

p−1
2

(
p
3

)
= −(−1)

p−1
2 . Thus,

(1±√3
2

) p−1
2 ≡





(
C
3

)
(mod p) if p ≡ 1 (mod 24),(

D
3

)
D
C (1∓√3) (mod p) if p ≡ 17 (mod 24),(

D
3

)
(mod p) if p ≡ 11 (mod 24),(

C
3

)
D
C (1∓√3) (mod p) if p ≡ 19 (mod 24).

If p ≡ 1 (mod 8), by [S5, p.1317] we have 2
p−1
4 ≡ (−1)

C2−1
8 (mod p)

and so
(1±√3

2

) p−1
2

=
(2±√3

2

) p−1
4 ≡ (−1)

C2−1
8 (2±

√
3)

p−1
4 (mod p).

Thus, from the above we obtain the congruence for (2±√3)
p−1
4 (mod p).

Applying Lemma 2.3 we see that

p | U p−1
8

(4, 1) ⇐⇒ (2 +
√

3)
p−1
4 ≡ 1 (mod p)

⇐⇒ p ≡ 1 (mod 24) and (−1)
C2−1

8

(C

3

)
≡ 1 (mod p)

⇐⇒
(C

3

)
= (−1)

C2−1
8 .

Now assume p ≡ 3 (mod 8) and C ≡ D ≡ 1 (mod 4). By [S5, p.1317]

we have 2
p−3
4 ≡ (−1)

C−1
2 + C2−1

8 D
C = (−1)

C−1
4 D

C (mod p). Thus,

(2±
√

3)
p+1
4

= 2
p+1
4

(1±√3
2

) p+1
2

= 2
p−3
4

(1±√3
2

) p−1
2

(1±
√

3)

≡ (−1)
C−1

4
D

C

(1±√3
2

) p−1
2

(1±
√

3)

≡





(−1)
C−1

4 D
C (D

3 )(1±√3) (mod p) if 24 | p− 11,

(−1)
C−1

4 D
C (C

3 )D
C (1−√3)(1 +

√
3) ≡ (−1)

C−1
4 (C

3 ) (mod p)
if 24 | p− 19.

So (ii) is true and the proof is complete.

We note that we prove Corollary 2.5 using only the quadratic reci-
procity.
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Corollary 2.6. Let p ≡ 1, 19 (mod 24) be a prime and hence p = C2 +
2D2 = x2 + 3y2 for some C, D, x, y ∈ Z.

(i) If p ≡ 1 (mod 24) and C + D ≡ 1 (mod 4), then (−1)
C2−1

8
(

C
3

)
=

(−1)
y
4 .

(ii) If p ≡ 19 (mod 24) and C ≡ 1 (mod 4), then (−1)
C−1

4
(

C
3

)
=

(−1)
x
4 +1.

Proof. If p ≡ 1 (mod 24), then clearly 4 | y. E. Lehmer[L] showed that
(2 +

√
3)

p−1
4 ≡ (−1)

y
4 (mod p). If p ≡ 19 (mod 24), then clearly 4 | x and

p ≡ 7 (mod 12). By [Lem, Ex. 6.30, p. 206] or [S4, Theorem 8.1(2) (with
m = 4, n = 2, d = 3)] we have (2 +

√
3)

p+1
4 ≡ (−1)

x
4 +1 (mod p). Now

comparing the above results with Corollary 2.5 we deduce the corollary.

3. Congruences for (b +
√

a2 + b2)
p−1
4 (mod p).

Lemma 3.1 (Western’s formula ([HW, (2.9)],[Lem, pp.296-298]).
Let p and q be distinct primes of the form 8k + 1. Suppose q = a2 + b2 =
c2 + 2d2 with a, b, c, d ∈ Z. Then for j ∈ {0, 1, . . . , 7} we have

p
q−1
8 ≡

( (a− b)d
ac

)j

(mod q)

⇐⇒ q
p−1
8 (a− bi)

p−1
4 (c− d

√−2)
p−1
2 ≡

(−1 + i√−2

)j

(mod p).

Theorem 3.1. Let p and q be distinct primes of the form 8k + 1. Sup-
pose p = C2 + 2D2 = x2 + qy2 and q = a2 + b2 = c2 + 2d2 with
a, b, c, d, C, D, x, y ∈ Z and a ≡ 1 (mod 4). Then

(b− ix/y

a

) p−1
4 ≡ (−1)

by
4

(dC − cD

q

)(x + byi

a

)
4

(mod p)

and so

p | U p−1
8

(2b,−a2) ⇐⇒
(x + byi

a

)
4

= (−1)
p−1
8 + by

4

(dC − cD

q

)
.

Proof. It is easily seen that

−2i(a− bi)(b− i
√
−a2 − b2) = (

√
−a2 − b2 − a + bi)2.

Thus

(−2i)
p−1
4 (a− bi)

p−1
4 (b− i

√
−a2 − b2)

p−1
4 = (

√
−a2 − b2 − a + bi)

p−1
2 .

13



By [S6, Theorem 5.1(ii)] we have
(x/y − a + bi

p

)
4

=
(x− ay + byi

p

)
4

= (−1)
by
4

(x + byi

a

)
4

( x

−a + bi

)
4
.

Since p ≡ 1 (mod 8), applying [S6, Lemma 6.1] we deduce
(x

y
− a + bi

) p−1
2

≡ (2a)
p−1
4 (−a2 − b2)

p−1
8 · (−1)

by
4

(x + byi

a

)
4

( x

−a + bi

)
4

(mod p).

Note that (x/y)2 ≡ −a2 − b2 (mod p). From the above we derive

(−1)
p−1
8 2

p−1
4 (a− bi)

p−1
4 (b− ix/y)

p−1
4

≡ (x/y − a + bi)
p−1
2

≡ (2a)
p−1
4 (−a2 − b2)

p−1
8 (−1)

by
4

(x + byi

a

)
4

( x

−a + bi

)
4

(mod p).

Therefore,

(3.1)
(a2 + b2)

p−1
8 (a− bi)

p−1
4

(
b− i

x

y

) p−1
4

≡ a
p−1
4 (a2 + b2)

p−1
4 (−1)

by
4

(x + byi

a

)
4

( x

−a + bi

)
4

(mod p).

Clearly q - x. Suppose x
q−1
4 ≡ (

b
a

)k (mod q) for k ∈ Z. Then

p
q−1
8 = (x2 + qy2)

q−1
8 ≡ x

q−1
4 ≡

( b

a

)k

≡
( (a− b)d

ac

)2k

(mod q).

Hence, appealing to Lemma 3.1 we have

(a2 + b2)
p−1
8 (a− bi)

p−1
4 (c− d

√−2)
p−1
2 ≡

(−1 + i√−2

)2k

= ik (mod p).

As c2D2 − d2C2 ≡ c2D2 − d2(−2D2) = qD2 (mod p) and c2D2 − d2C2 ≡
−2d2D2 − d2C2 = −pd2 (mod q), we see that (c2D2 − d2C2, pq) = 1. Set
D = 2sD0 and cD − dC = 2rA with 2 - AD0. Then (A, pq) = 1. Thus,

(c− dC/D

p

)

=
(D

p

)(cD − dC

p

)
=

(D0

p

)(A

p

)
=

( p

D0

)( p

A

)

=
(C2 + 2D2

D0

)(C2 + 2D2

A

)
=

(C2

D0

)( q

A

)( (c2 + 2d2)(C2 + 2D2)
A

)

=
( q

A

)( (cC + 2dD)2 + 2(cD − dC)2

A

)

=
( q

A

)
=

(A

q

)
=

(cD − dC

q

)
.
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Note that ( C
D )2 ≡ −2 (mod p). From the above we deduce

(a2 + b2)
p−1
8 (a− bi)

p−1
4

≡ (c− d
√−2)−

p−1
2 ik ≡

(c− dC/D

p

)
ik =

(cD − dC

q

)
ik (mod p).

Substituting this into (3.1) we see that

(b− ix/y

a

) p−1
4

≡
(cD − dC

q

)
i−kq

p−1
4 (−1)

by
4

(x + byi

a

)
4

( x

−a + bi

)
4

(mod p).

From [S5, Corollary 4.6(i)] we know that q
p−1
4 ≡ (x

q ) (mod p). As x
q−1
4 ≡

(
b
a

)k (mod q) we have x
q−1
2 ≡ (−1)k (mod q) and so (x

q ) = (−1)k. Thus

q
p−1
4 ≡ (x

q ) = (−1)k (mod p). Since q = a2 + b2 and a − bi is primary in

Z[i], we have x
q−1
4 ≡ ( b

a )k ≡ (−i)k = i−k (mod a− bi) and so
(

x
−a+bi

)
4

=(
x

a−bi

)
4

= i−k. Thus,

q
p−1
4

( x

−a + bi

)
4
i−k ≡ (−1)k · i−k · i−k = 1 (mod p)

and therefore

(b− ix/y

a

) p−1
4 ≡ (−1)

by
4

(cD − dC

q

)(x + byi

a

)
4

(mod p).

Note that ( ix
y )2 ≡ a2 + b2 (mod p). From Lemma 2.3 and the above we

deduce

p | U p−1
8

(2b,−a2)

⇐⇒ (b +
√

b2 + a2)
p−1
4 ≡ (−a2)

p−1
8 (mod p)

⇐⇒
(b +

√
a2 + b2

a

) p−1
4 ≡ (−1)

p−1
8 (mod p)

⇐⇒ (−1)
by
4

(cD − dC

q

)(x + byi

a

)
4
≡ (−1)

p−1
8 (mod p)

⇐⇒
(x + byi

a

)
4

= (−1)
p−1
8 + by

4

(cD − dC

q

)
.

This completes the proof.
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Corollary 3.1. Let p 6= 17 be a prime of the form 8k + 1 and so p =
C2 + 2D2 for some C,D ∈ Z. Then

(4±
√

17)
p−1
4

≡ 1 (mod p) ⇐⇒ p = x2 + 17y2(x, y ∈ Z) and (−1)y =
(2C − 3D

17

)

and so

p | U p−1
8

(8,−1)

⇐⇒ p = x2 + 17y2(x, y ∈ Z) and (−1)
p−1
8 +y =

(2C − 3D

17

)
.

Proof. If (17
p ) = −1, then

(4±
√

17)p−1 =
(4±√17)p

4±√17
≡ 4± (

√
17)p

4±√17
≡ 4∓√17

4±√17
= −(4∓

√
17)2 6≡ 1 (mod p)

and so (4±√17)
p−1
2 6≡ 1 (mod p). If ( 17

p ) = 1, by [Br] or [S5, p.1324] we
have

(4±
√

17)
p−1
2 ≡ 1 (mod p) ⇐⇒ p = x2 + 17y2 (x, y ∈ Z).

Assume p = x2 + 17y2 for some x, y ∈ Z. Taking q = 17, a = 1, b =
4, c = 3 and d = 2 in Theorem 3.1 we deduce

(4±
√

17)
p−1
4 ≡ (−1)y

(2C − 3D

17

)
(mod p).

By Lemma 2.3 we have

p | U p−1
8

(8,−1) ⇐⇒ (4 +
√

17)
p−1
4 ≡ (−1)

p−1
8 (mod p).

Thus the result follows.

Corollary 3.2. Let p ≡ 1 (mod 8) be a prime such that p = C2 + 2D2 =
x2 + 257y2 6= 257 for C,D, x, y ∈ Z. Then

(16±
√

257)
p−1
4 ≡

(4C − 15D

257

)
(mod p)

and so
p | U p−1

8
(32,−1) ⇐⇒

(4C − 15D

257

)
= (−1)

p−1
8 .

Proof. Taking q = 257, a = 1, b = 16, c = 15 and d = 4 in Theorem 3.1
we obtain the result.

16



Corollary 3.3. Let p 6= 73 be a prime of the form 8k + 1 such that
p = C2 + 2D2 = x2 + 73y2 for C, D, x, y ∈ Z. Then

p | U p−1
8

(16,−9) ⇐⇒ 3 | xy and (−1)
p−1
8

(6C −D

73

)
=

{
1 if 3 | y,
−1 if 3 | x.

Proof. Taking q = 73, a = −3, b = 8, c = 1 and d = 6 in Theorem 3.1
we see that

p | U p−1
8

(16,−9) ⇐⇒
(x + 8yi

3

)
4

=
(x + 8yi

−3

)
4

= (−1)
p−1
8

(6C −D

73

)
.

Since

(x + 8yi

3

)
4

=





(x
3 )4 = 1 if 3 | y,

( 8yi
3 )4 = ( i

3 )4 = −1 if 3 | x,

( 1+8i
3 )4 = ( i(1+i)

3 )4 = i if 3 | x− y,

( 1−8i
3 )4 = ( 1+i

3 )4 = −i if 3 | x + y,

from the above we deduce the result.

Corollary 3.4. Let p 6= 41 be a prime of the form 8k + 1 such that
p = C2 + 2D2 = x2 + 41y2 for C, D, x, y ∈ Z. Then

p | U p−1
8

(8,−25)

⇐⇒ 5 | xy and (−1)
p−1
8 +y

(4C − 3D

41

)
=

{
1 if 5 | y,
−1 if 5 | x.

Proof. Taking q = 41, a = 5, b = 4, c = 3 and d = 4 in Theorem 3.1
we see that

p | U p−1
8

(8,−25) ⇐⇒
(x + 4yi

5

)
4

= (−1)
p−1
8 +y

(4C − 3D

41

)
.

Since x 6≡ ±2y (mod 5) and

(x + 4yi

5

)
4

=





(x
5 )4 = 1 if 5 | y,

( 4yi
5 )4 = ( i

5 )4 = −1 if 5 | x,

( 1+4i
5 )4 = ( i(1+i)

5 )4 = −i if 5 | x− y,

( 1−4i
5 )4 = ( 1+i

5 )4 = i if 5 | x + y,

from the above we deduce the result.
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Corollary 3.5. Let p 6= 89 be a prime of the form 8k + 1 such that
p = C2 + 2D2 = x2 + 89y2 for C, D, x, y ∈ Z. Then

p | U p−1
8

(16,−25)

⇐⇒ 5 | xy and (−1)
p−1
8

(2C − 9D

89

)
=

{
1 if 5 | y,
−1 if 5 | x.

Proof. Taking q = 89, a = 5, b = 8, c = 9 and d = 2 in Theorem 3.1
we see that

p | U p−1
8

(16,−25) ⇐⇒
(x + 8yi

5

)
4

= (−1)
p−1
8

(2C − 9D

89

)
.

Since x 6≡ ±y (mod 5) and

(x + 8yi

5

)
4

=





(x
5 )4 = 1 if 5 | y,

( 8yi
5 )4 = ( i

5 )4 = −1 if 5 | x,

( 1+4i
5 )4 = ( i(1+i)

5 )4 = −i if 5 | x− 2y,

( 1−4i
5 )4 = ( 1+i

5 )4 = i if 5 | x + 2y,

the result follows.

Lemma 3.2 ([E], [S1, Proposition 1], [S2, Lemma 2.1]). Let m ∈ N
and a, b ∈ Z with 2 - m and (m,a2 + b2) = 1. Then

(a + bi

m

)2

4
=

(a2 + b2

m

)
.

Theorem 3.2. Let A,B ∈ Z be such that 2 - A and A4 +16B2 is a prime,
and let p ≡ 1 (mod 8) be a prime such that p = x2 + (A4 + 16B2)y2 6=
A4 + 16B2 for x, y ∈ Z. Assume A4 + 16B2 = c2 + 2d2 and p = C2 + 2D2

with c, d, C,D ∈ Z. Then

(4B ±
√

A4 + 16B2)
p−1
4 ≡ (−1)By

( dC − cD

A4 + 16B2

)
(mod p)

and

p | U p−1
8

(8B,−A4) ⇐⇒ (−1)By
( dC − cD

A4 + 16B2

)
= (−1)

p−1
8

(A

p

)
.

Proof. Putting q = A4 + 16B2, a = A2 and b = 4B in Theorem 3.1 we
see that

(4B − ix/y

A2

) p−1
4 ≡ (−1)By

( dC − cD

A4 + 16B2

)(x + 4Byi

A2

)
4

(mod p).
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From Lemma 3.2 we have
(x + 4Byi

A2

)
4

=
(x2 + 16B2y2

A

)
=

(p−A4y2

A

)
=

( p

A

)
=

(A

p

)
.

Thus, (
4B − i

x

y

) p−1
4 ≡ (−1)By

( dC − cD

A4 + 16B2

)
(mod p)

and so (
4B + i

x

y

) p−1
4 ≡ (−1)By

( dC − cD

A4 + 16B2

)
(mod p).

Since (ix/y)2 ≡ A4 + 16B2 (mod p), we deduce

(4B ±
√

A4 + 16B2)
p−1
4 ≡ (−1)By

( dC − cD

A4 + 16B2

)
(mod p).

Applying Lemma 2.3 we see that

p | U p−1
8

(8B,−A4)

⇐⇒ (−1)By
( dC − cD

A4 + 16B2

)
≡ (−A4)

p−1
8 ≡ (−1)

p−1
8

(A

p

)
(mod p)

⇐⇒ (−1)By
( dC − cD

A4 + 16B2

)
= (−1)

p−1
8

(A

p

)
.

This proves the theorem.

Corollary 3.6. Let p ≡ 1 (mod 8) be a prime such that p = C2 + 2D2 =
x2 + 97y2 6= 97 for C, D, x, y ∈ Z. Then

(4±
√

97)
p−1
4 ≡ (−1)y

(6C − 5D

97

)
(mod p)

and so

p | U p−1
8

(8,−81) ⇐⇒
(6C − 5D

97

)
= (−1)

p−1
8 +y

(p

3

)
.

Proof. Taking A = 3 and B = 1 in Theorem 3.2 we obtain the result.

Corollary 3.7. Let p ≡ 1 (mod 8) be a prime such that p = C2 + 2D2 =
x2 + 337y2 6= 337 for C,D, x, y ∈ Z. Then

(16±
√

337)
p−1
4 ≡

(12C − 7D

337

)
(mod p)

and so

p | U p−1
8

(32,−81) ⇐⇒
(12C − 7D

337

)
= (−1)

p−1
8

(p

3

)
.

Proof. Taking A = 3 and B = 4 in Theorem 3.2 we obtain the result.
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Corollary 3.8. Let p ≡ 1 (mod 8) be a prime such that p = C2 + 2D2 =
x2 + 641y2 6= 641 for C,D, x, y ∈ Z. Then

(4±
√

641)
p−1
4 ≡ (−1)y

(10C − 21D

641

)
(mod p)

and so

p | U p−1
8

(8,−625) ⇐⇒
(10C − 21D

641

)
= (−1)

p−1
8 +y

(p

5

)
.

Proof. Taking A = 5 and B = 1 in Theorem 3.2 we obtain the result.

4. Five conjectures.

Conjecture 4.1. Let p ≡ 3 (mod 8) be a prime and k ∈ Z with 2 - k.
Suppose p = x2 + (k2 + 1)y2 for some x, y ∈ Z. Then

V p+1
4

(2k,−1) ≡



−(−1)

( p−1
2 y)2−1

8 2
p+1
4 (mod p) if k ≡ 5, 7 (mod 8),

(−1)
( p−1

2 y)2−1
8 2

p+1
4 (mod p) if k ≡ 1, 3 (mod 8).

In the case k = 1 Conjecture 4.1 was proved by the author in [S6] and
C.N. Beli in [B].

Conjecture 4.2. Let p ≡ 3 (mod 4) be a prime and k ∈ Z with 2 - k.
Suppose 2p = x2 + (k2 + 4)y2 for some x, y ∈ Z.

(i) If k ≡ 1, 3 (mod 8), then

V p+1
4

(k,−1)

≡




(−1)
( p−1

2 y)2−1
8 (−2)

p+1
4 (mod p) if k ≡ 1, 11 (mod 16),

−(−1)
( p−1

2 y)2−1
8 (−2)

p+1
4 (mod p) if k ≡ 3, 9 (mod 16).

(ii) If k ≡ 5, 7 (mod 8), then

V p+1
4

(k,−1) ≡




(−1)
( p−1

2 y)2−1
8 2

p+1
4 (mod p) if k ≡ 5, 15 (mod 16),

−(−1)
( p−1

2 y)2−1
8 2

p+1
4 (mod p) if k ≡ 7, 13 (mod 16).

In the case k = 1 Conjecture 4.2 was conjectured by the author in
[S3,S6] and proved by C.N. Beli in [B].

Conjectures 4.1 and 4.2 have been checked for all 1 ≤ k < 100 and
p < 20, 000.

Inspired by [S6, Conjectures 9.1-9.9], we pose the following conjectures.
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Conjecture 4.3. Let p ≡ 1 (mod 4) and q ≡ 3 (mod 8) be primes such
that p = c2 + d2 = x2 + qy2 with c, d, x, y ∈ Z and q | cd. Suppose
c ≡ x ≡ 1 (mod 4), y = 2βy0 and y0 ≡ 1 (mod 4).

(i) If p ≡ 1 (mod 8), then

q
p−1
8 ≡

{
±(−1)

y
4 (mod p) if x ≡ ±c (mod q),

∓(−1)
q−3
8 + y

4 d
c (mod p) if x ≡ ±d (mod q).

(ii) If p ≡ 5 (mod 8), then

q
p−5
8 ≡

{ ± y
x (mod p) if x ≡ ±c (mod q),

∓(−1)
q−3
8

dy
cx (mod p) if x ≡ ±d (mod q).

Conjecture 4.4. Let p ≡ 1 (mod 4) and q ≡ 7 (mod 16) be primes
such that p = c2 + d2 = x2 + qy2 with c, d, x, y ∈ Z and q | cd. Suppose
c ≡ x ≡ 1 (mod 4), y = 2βy0 and y0 ≡ 1 (mod 4).

(i) If p ≡ 1 (mod 8), then

q
p−1
8 ≡

{
(−1)

y
4 (mod p) if q | d,

−(−1)
y
4 (mod p) if q | c.

(ii) If p ≡ 5 (mod 8), then

q
p−5
8 ≡

{ y
x (mod p) if q | d,
− y

x (mod p) if q | c.

Conjecture 4.5. Let p ≡ 1 (mod 4) and q ≡ 15 (mod 16) be primes such
that p = c2 +d2 = x2 +qy2 with c, d, x, y ∈ Z and q | cd. Suppose y = 2βy0

and x ≡ y0 ≡ 1 (mod 4).
(i) If p ≡ 1 (mod 8), then q

p−1
8 ≡ (−1)

y
4 (mod p).

(ii) If p ≡ 5 (mod 8), then q
p−5
8 ≡ y

x (mod p).

Conjectures 4.3-4.5 have been checked for all primes p < 200, 000 and
q < 200.
Added in proof. We have the following generalization of Conjectures
4.4 and 4.5.

Conjecture 4.6. Let q be a prime of the form 8k + 7. Then there exist
disjoint subsets S0, S1, S2 of {∞}∪{k ∈ Z/qZ : (k2+1

q ) = 1} such that for
any primes p = c2 + d2 = x2 + qy2 with c, d, x, y ∈ Z, x = 2αx0, 2βy0 and
c ≡ x0 ≡ y0 ≡ 1 (mod 4),

q
p−1
8 ≡





(−1)
y
4 (mod p) if c

d ∈ S0,

−(−1)
y
4 (mod p) if c

d ∈ S1,

±(−1)
y
4 d

c (mod p) if ± c
d ∈ S2

for p ≡ 1 (mod 8),
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and

q
p−5
8 ≡





y
x (mod p) if c

d ∈ S0,
− y

x (mod p) if c
d ∈ S1,

±dy
cx (mod p) if ± c

d ∈ S2

for p ≡ 5 (mod 8).

Here we identify c/d with ∞ when q | d, and identify a with a + qZ.
Moreover, |S0| = |S1| = |S2| = q+1

8 , a
b ∈ S0 ∪ S1 implies (a+bi

q )4 = 1, and
a
b ∈ S2 implies (a+bi

q )4 = −1.

For q = 23 we have S0 = {∞,±10}, S1 = {0,±7} and S2 =
{1, 5,−9}. For q = 31 we have S0 = {0,∞,±1}, S1 = {±7,±9} and
S2 = {−2, 3, 10,−15}. For q = 47 we have S0 = {0,∞,±4,±12}, S1 =
{±1,±10,±14} and S2 = {−6,−7, 8,−11,−17,−20}.
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