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Congruences for (A++v/ A2 + mBQ)pz;1 and (b++va? + bQ)% (mod p)
by
ZHI-HONG SUN (Huaian)

ABSTRACT. Let Z be the set of integers, and let p be an odd prime.
In the paper we use the quadratic reciprocity law to determine (A +

—1
VA2 + mB2)pT (mod p) for A, B,m € Z, and use Western’s formula to

1
determine (b++va2 + b2)pT (mod p) provided that p = 22+ (a?+b%)y? =
1 (mod 8), a,b,x,y € Z, 2t a, 4| b and a® + b? is a prime.

1. Introduction.

Let Z and N be the sets of integers and positive integers respectively,
i = +/—1and Z[i] = {a +bi | a,b € Z}. For a,b € Z, a + bi is called
primary if b = 0 (mod 2) and @ = 1 —b (mod 4). When 7 or —r is primary
in Z[i] and o € Z[i], one can define the quartic Jacobi symbol (£), as in
[S2,54]. For the properties of the quartic Jacobi symbol one may consult
[IR], [S4, (2.1)-(2.8)] and [S6, Propositions 2.1-2.6].

For any positive integer m and a € Z let (%) be the Legendre-Jacobi-
Kronecker symbol. (We also assume (§) = 1.) For our convenience we
also define (-%-) = (;%). Then for any two odd numbers m and n we have

the following general quadratic reciprocity law:

m—1 n—1 (

w1) (T): (-1)"7 3 %) ifm>0orn>0,
' n _(_1)%_1'7%1(%) if m <0 and n <0.

Let a,m, A, B,C, D € Z and let p be an odd prime such that ap = C? +
2 : . ALVATImB?\ 53
mD?. In Section 2 we obtain congruences for (44 +mED) (mod p)
using only the quadratic reciprocity law. This generalizes the result for
m = 1 in [S5]. For example, if p = C? +2D? is a prime of the form 8k +1,
then

- 2043D) (mod it (&) =1,
(3i\/ﬁ)pzl = { <20173D>(i¢\/ﬁ)pg . (17)
(2GR BEE02 (mod p) i () = —1.
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Suppose that p is a prime of the form 8k + 1. In Section 3, using West-
ern’s formula for octic residues we determine (b + va? + 192)177_1 (mod p)
provided that p = 22 + (a? + b?)y? # a® + b2, a,b,x,y € Z, 21 a, 4 | b and
a? + b? is a prime. See Theorems 3.1 and 3.2. For instance, if p # 17 is a
prime of the form 8k + 1 and so p = C? + 2D? for some C, D € Z, then

(Zli\/1_7)pT_1 =1 (mod p)
20—3D).

— p=2*+17y*(z,y € Z) and (—1)¥ = ( T

For b,c € Z the Lucas sequences {U,(b,c)} and {V,,(b,c)} are defined
by

Up(b,c) =0, Ui(b,c) =1, Upy1(b,c) = bUy(b,c) — cUp—1(b,c) (n > 1)
and
Vo(b,c) =2, Vi(b,c) =b, Vyp1(b,c) = bV, (b,¢) — cVi—1(byc) (n > 1).

Let d = b% — 4c. Tt is well known that for n € N,

(1.2) U, (b, c) = { \/La{(%a)n - (%ﬁ)n} if d #0,
n\Y n(g)nfl Fd—0

and

b+\/3)”+ <b— \/3)”.

(1.3) Vo(b,c) = ( 5 5

Let p be an odd prime. In Section 2 we obtain a criterion for U pt (24,

—mB?) =0 (mod p) (if p= 1 (mod 4)) in terms of binary quadratic forms,
in Section 3 we derive a criterion for p | Up_s (2b, —a?) (if p=1 (mod 8),
2ta,4|band a®+b? is a prime), and in Section 4 we pose five conjectures
concerning V1 (k, —1) (mod p) (if p = 3 (mod 4)) and q!P/® (mod p) (if
p =1 (mod 4) and ¢ = 3 (mod 4)), where [z] is the greatest integer not
exceeding x.

Throughout the paper we use (m,n) to denote the greatest common
divisor of integers m and n.

2. Congruences for (A+vA +mB2 VA;+mBQ)pT_1 (mod p).
For complex numbers A, B, C, D and m it is clear that

(2.1)  (A* +mB?)(C? + mD?) = (AC —mBD)? + m(AD + BO)>.
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Lemma 2.1. Suppose A, B,C,D,m € Z, A2 +mB? # 0, C?>+mD? > 1,
(A,B) = (C,D)=1,21C?+mD? and (A2 + mB? C? + mD?) = 1. Let

6—{1 if A2 4+mB? >0 or AD + BC > 0,
"7\ -1 if A2+ mB? <0 and AD + BC < 0.

Then
< AD + BC >
\C2 + mD2
(—1)*ZFEm (ADEBCY if AD + BC =0 (mod 2),
=4 (4555) if AD + BC =1 (mod 4),
(—1)FIP(SAR=BCY  jf AD + BC =3 (mod 4).

Proof. If q is a prime such that ¢ | (AD + BC,C? + mD?), then
D?(A? + mB?) = B20C? + mB2D? = B%(C? + mD?) = 0 (mod q). As
(A% +mB2% C? + mD?) = 1, we have q { A?> + mB? and hence q | D.
Thus, C?* = —mD? = 0 (mod ¢) and so ¢q | C. Since (C,D) = 1, this is
impossible. Therefore, (AD + BC,C? + mD?) = 1. By the symmetry, we
also have (AD + BC, A? + mB?) = 1.

Suppose AD + BC = 2%1n;(2 { ny) and A2 + mB? = 2°n(2{n). B
(1.1) and (2.1) we obtain

(AD+BC>( 241 )

C2+mD?)\C? + mD?
. ( ni ) —( 1)n171,02+mD271 (02 +mD2>
- \C2+mD2) ny

REE S <A2 + m32> ((A2 +mB?)(C? + mD2)>

ni
_ (_1)’ﬂ12 1 C’2+mD2 1< n)
(e

( (AC — mBD)? +m(AD+BC)2>
_(Cn 1.C2emp2 1 ( 2 ) (n)( (AC — mBD) )

e 1(2)%0( ) 1'"21(@)

ni

n
- (2 () (4210
Hence
(AD+BC>
(2.2) '\ C? + mD?

S ) (2 (2
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If 2| AD + BC, as (AD + BC, A? + mB?) = 1 we have 21 A% + mB2.
Thus, a =0, n = A2 + mB? and 24 (C? + mD?)n. By (2.1) we have

(C?* +mD?*)n

= (A2 + mB?*)(C* + mD?) = (AC — mBD)? + m(AD + BC)?
~ [ 1 (mod 8) if AD+ BC =0 (mod 4),

B { 1+4m (mod 8) if AD+ BC =2 (mod 4).

Thus,

( 1)n117(C2+mD2)n1< 2 >a1
(C?2 4+ mD?)n

- (et
-~ \(C2+mD?)n
_{1 if AD+ BC =0 (mod 4),

(1+24m) =(-1)™ if AD+ BC =2 (mod 4).

Hence, by (2.2) we deduce the result.
Now assume AD+BC =1 (mod 4). Then oy = 0and ny = AD+BC =
1 (mod 4). Observe that

<£)a<AD+BC> ~( 2 >a(AD+BC>

ny n AD + BC n
AD + BC\«/AD + BC AD + BC
-(=) () - Ger):

By (2.2) we deduce the result.
Finally we assume AD + BC = 3 (mod 4). Then A(—D) + B(—C) =
1 (mod 4). From the above we deduce

o (Gt o0 = (e (AL BCO),

As (C,D) =1 and 21 C?+mD?, we see that % = [%]D (mod 2).
So the result follows. The proof is now complete.
Lemma 2.2. Let C, D,m € Z with (C, D) =1 and C*+mD? € {3,5,7,...}.
Then

1 if 4|D,

D .
<—> —{ (=™ if 4|D-2,
(-1)7= 18 i 2¢D.
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Proof. Set D = 2%Dy(2 1 Do). If 4 | D, then C? + mD? = C? =
1 (mod 8) and so

2 2 2
(orege) = (o) = (E522) = (5) -+

If 4| D — 2, then C? + mD? = 1+ 4m (mod 8) and so

2 2
(ﬁ) = (%) = (5 +24m> (C }TD ) =1

If 21 D, then

(e we)
_ (_1)1321.c2+wyﬂl<02 +DmD2> _ (_1)?‘%%(02)

D—1 C24m-—1 D—1
Gl 121

= <_1) 2

D

vf3

So the lemma is proved.

Lemma 2.3. Let b,c € Z and n € N. Let p be an odd prime such that
ptc(b® —4c). Then

p| Un(b,c) < <%2_40>2n = c" (mod p).
Proof. From (1.2) we have
) o (LT (ST
PN (b—i— @)271 _ <b2 — (b42 — 4c)>n — o (mod p).

This proves the lemma.
For complex numbers A, B and m it is clear that

(2.3) (A+ Bv—m)

A+VA2+mB? <A+ By/—m + VA% + mB2>2
2 B 2 '

Now using Lemmas 2.1-2.3 and (2.3) we deduce the following main
result.
5



Theorem 2.1. Let p be an odd prime, a,m,C,D € Z,a > 0,21 a,(C, D)
=1 and ap = C?> + mD?. Let A,B € 7 with (A,B) = 1,p { mB and
(A% + mB? ap) = 1. Suppose that &y is given in Lemma 2.1. Let

|

1)zm if 2| D,
1)~

-1 [m]

2lgf 24D,
if AD + BC = 0,1 (mod 4),
1) if AD + BC =2 (mod 4),

(_
(— 2
1

(_ m

(-DEIP if AD + BC =3 (mod 4),

and
06102(42E5S)  if AD + BC # 3 (mod 4),
| 00102(542=5E)  if AD + BC' =3 (mod 4).
Then
<A + /A2 + mB2>”21
2
[ e(PAEEES)) (mod p) if (A=) =1,
o(RADEBC)) DATVATIMEY) (1mod p) if (A2mB2) — 1,

Moreover, if p=1 (mod 4), then

P | UpT—l (24, —mDB?)

<A2 —|—me2) 1 und €<D(AD—|—BC)> _ (2BpCD).

a

Proof. As (5*) = 1 and (Va)? = VZ 2" = (2)y/z (mod p) for

p
x € Z, using the binomial theorem and Fermat’s little theorem we see that

(A+ BV=—m + /A2 + mB2)”
= AP + (BV—m)? + (/A2 + mB2)?

2 2
=A+Bv-m+ (A—FTmB> V A2 +mB? (mod p).
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Thus,

<A + Bv/-m+ VA2 + mB? )p—l
2
(A+ By/—m +VA? + mB?)P
A+ By/—-m+ VA% +mB?
A+ By-m+ (%)\/AQ + mB?
- A+ By—m+ VA2 + mB?
{ A—VA2+mB? (mod p) if (A2+mB2) — 1
_ P

Byv—m ;
1 (mod p) if (%) = 1.

Hence applying (2.3) we obtain

(A+B\/%)T<A+W)p;

Bv—m
1 (mod p) if (A2+mB2) = 1.

{ A—A2+mB? (mod p) if (A2+mB2) — 1,

As (%)2 = —m (mod p), substituting v/—m with % in the congruence we

have . _—— -
<A+\/m>2<A+B_C’>2

2 D
21 mB2 . 21 mB2
_ —A’VB%/B B> (mod p) if (4 +p B) = -1,
1 (mod p) if (AEmER) =,

Using Lemmas 2.1 and 2.2 we have

(A+ BC/D)*" = (—A + iC/D) _ (% (—AD ; BC)
D\ /AD + BC\ D\ tAD + BC
-G EEE)ELT)
- (%) (AD Z BO) <02 +DmD2> <é£++mBDC;>
_ 6(D(AD;— BC’)) (mod p).
Now combining the above we deduce
<A+ \/m>”§1
a(@) (mod p) if (A=) = 1,
= { E(D(ADGJFBC))D(Aﬂ/W) (mod p) if (A2+mB2) - _1
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Since ap = C? + mD? we see that (=) = 1 and so

(A—i—\/m)]?l(fl—\/m)p;l

2

We also have

D(A+VAZ¥mB?) D(A—AZ{mB?) —mBD?

B0 e = gz = 1 (mod p).
Thus, we also have
(A — VA% + mB2>p2
2
5(D(A++BC>) (mod p) if (%) =1,
= g(D(ADa—FBC))D(A-&—\/I?é—FW) (mod p) if (A2+£n32) —

Now we assume p = 1 (mod 4). From the above and Lemma 2.3 we see
that

D | ULfl (QA, —mBZ)

— (A+ VA2 +mB2)" 7T = mB2)prl = (%) - (mod p)
A+ VAT ¥ mB2\ %5 /2BCD
= ( 5 > = ( . ) (mod p)
2BCD\ (D(AD + BC)
=)=
{1 (mod p) if (A =,
D(A—\/élé—&-mBQ) (mod p) if (A2—|—;nB2) — 1

Since p f mB(A? + mB?) we have A # ++/ A2+ mB?2 (mod p) and so
A2 + mB? — AVAZ + mB2? #£ 0 (mod p). Thus

(D(A — VA2 + mBz)) 242 + mB? — 2AV A2 + mB?
BC —mDB?

Z 1 (mod p)

and so (D(A_ “§é+m32)) # +1 (mod p). Hence,
)

p | Up—l (2A _mB2

<A2+mB2> D(AD+BC’))

a

<QBCD).

=1 and 5(
p
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The proof is now complete.

Remark 2.1 From (2.1) we see that (AD 4+ BC, AC —mBD) = 1 implies
(AD + BC, (A% + mB?)(C? + mD?)) = 1. Thus, according to the proof
of Lemma 2.1, we may replace the condition (4% + mB?,C? + mD?) = 1
with (AD + BC,AC — mBD) = 1 in Lemma 2.1. Hence, by the proof
of Theorem 2.1, we may replace the condition (42 + mB?,ap) = 1 with
(AD + BC,AC —mBD) =1 in Theorem 2.1.

Corollary 2.1. Let p be an odd prime, m € {2,4,6,...} and p = C% +
mD? for some C,D € Z. Suppose A,B € Z,(A, B) = 1,p{ B(A%2 + mB?)
and AD + BC # 3 (mod 4). Then

(Ai\/A2+mBQ>
=P po1m A2 4 B2
(1) # (47pape) (wod p) if () =1,
= 1-(0P po1m D(AFVAZFmB?
=\ (CD) T (48RS PAREAE) (mod p)
if (AmBy — .

p

Moreover, if p=1 (mod 4), then

| Up1 (24, —mB?)
o (FEE) = = e (200 - (3) ()

Proof. For p =1 (mod 4) we have (%) = (&) = (M) = (%) and
(%) =(5) = (M) = (%2) = 1. Thus, taking a = 1 in Theorem 2.1
we deduce the result.

Corollary 2.2. Let p be a prime of the form 8k +1 and so p = C? 4 2D?
for some C,D € 7. Suppose A,B € 7,(A,B) = 1,p{ B(A? + 2B?) and
AD + BC # 3 (mod 4). Then

(A+/A2 1 2B2)" 7

{ (é\?DL%g) (mod p) if <A2f232) =1,

(AD+BC) D(A:Fx/A2+2B2) (
A212B?

Moreover, if p=1 (mod 4), then

1002 o (L) 1 md (A2EEC) - (2)(2),
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Proof. If 21 D, then p = C?> +2D? =1+ 2 = 3 (mod 8). Thus 2 | D.
(A2—|—282) _ p
P

Now putting m = 2 in Corollary 2.1 and noting that = (m)

we deduce the result.
For instance, if p = C? 4 2D? is a prime of the form 8k + 1, then

. 2043D) (mod p) if (&)=1,
(24) (34T = { U ) oty 't
( 17 ) 2C (mod p) if (ﬁ) =—1
and
p | Up4;1(3, _2) < b | UPT_l(67_8)
(2.5)

= (B)=1 w (TE)- ()

Corollary 2.3. Let p=1,3,7,9 (mod 20) be a prime different from 7.
(i) If p = 1,9 (mod 20) and hence p = C* + 5D? with C,D € Z and
C+ D =1 (mod 4), then

(11\/6>”21:{51(02D) (mod p) if (5) =1,
2 0 (PG FVE) (modp) if (3) =1

and

D)~ (),

where 61 =1 or —1 according as 41D —2 or4| D — 2.
(ii) If p = 3,7 (mod 20) and hence Tp = C? + 5D? with C,D € Z and
C+ D =1 (mod 4), then

p|UpT—1(2,—5) — <]§3>:1 and 6 (

<1 i\/é)”gl _ { 51(C—gD)(D(C7—|—D)) (mod p) if (g) =1,
2 ) T ) () 2 B o ) (5

where 61 = 1 or —1 according as 41D —2 or 4| D — 2.

Proof. If p = C%? 4+ 5D? with C,D € Z and D = 2°Dy(2 { Dy), then
a+1 a

clearly () = (8) = (3) = (§) and (22) = (57)(22) = () () -

(=1)5 (et = (—1)*5 P, Thus, puttinga = A =B =1and m = 5

in Theorem 2.1 we deduce (i). Takinga =7, A= B =1and m =51in

Theorem 2.1 we deduce (ii).
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Corollary 2.4. Let p = 1,2,4 (mod 7) be an odd prime and hence p =
C? +7D? for some C,D € Z. Suppose C + D =1 (mod 4). Then

(1+2v2)"
B (_1)%+% (mod p) if p==+1 (mod 8),
(_I)MJF%%(A +2v/2) (mod p) if p=+3 (mod 8).

Moreover, if p=1 (mod 4), then

p | UPTA(Q,—7) < 8|p—1and (—1)w+% — (_1)% (%)

Proof. Taking a = A = B =1 and m = 7 in Theorem 2.1 we obtain
the congruence for (1 + 2\/5)1%1 (mod p). For p =1 (mod 8) and D =
2%Dy(2 1 Dy), it is clear that

e (§)=(2)- () -(3)-0=(9

() =)= - (5 -(5) -

Thus, by Theorem 2.1 we have

and

p | UPT_l (27 _7)
= - 2CD -
< 8|p—1 and (—1)D(D2 D= (L> — (_1)021(€)
D 7
This completes the proof.

Corollary 2.5. Let p=1,3 (mod 8) be a prime and hence p = C? 4+ 2D?
for some C, D € 7.
(i) If p=1 (mod 8) and C + D =1 (mod 4), then

(24 \/g)pT_l _ { (—1)02871 (£) (mod p) if p=1 (mod 24),
(—1)S (2)2(1 % v3) (mod p) if p =17 (mod 24)
and so
pIUna(a1) = (5) = ()"
(ii) If p=3 (mod 8), p>3 and C =D =1 (mod 4), then
(21 VE)E = { ()5 () (mod p) if p=19 (mod 24),
-1 ()20 ﬁ\/ﬁ) (mod p) if p=11 (mod 24).



Proof. If p = 1 (mod 8), then 2 | D. If p = 3 (mod 8), then 2 { D.
Thus, putting a = A = B =1 and m = 2 in Corollary 2.1 we see that

<1i¢§)%15{(0+—D) (mod p) if (5) =1,

2 (SE2)L2(1FV3) (mod p) if (%) = —1.

If p = 1 (mod 3), then 3 | D and (%) = (-1)"z (%) = (-1)"= . If
p =2 (mod 3), then 3 | C' and (%) = (—1)1%1(%’) = —(-1)*=z = . Thus,

(§) (mod p) if p=1 (mod 24),
(1 + \/§>‘ ] (B)B(1%3) (mod p) if p=17 (mod 24),
2 N (%) (mod p) if p=11 (mod 24),
(%) (1F+v/3) (mod p) if p=19 (mod 24).

If p=1 (mod 8), by [S5, p.1317] we have 2“7 T = (=1)"s (mod p)
and so
<1i\/§>”21 B <2j:\/§>p41 _(1)S
2 2
Thus, from the above we obtain the congruence for (2 + \/g)p%1 (mod p).
Applying Lemma 2.3 we see that

plUss(4,1) = (2+V3)"T =1 (mod p)

(2+ \/g)pT_1 (mod p).

<= p=1 (mod 24) and (—1)$ (%) =1 (mod p)

02—1
= ( ) (-1)=
Now assume p = 3 (mod 8) and C = D =1 (mod 4). By [S5, p.1317]
we have 2°7° = (_1)021+c _1% (—1) % (mod p). Thus,

(2+V3)"
:2,T<1i\/_>’”31:2,:3<1i\/§>”;1(1i\/§)

2

V/3) (mod p) if 24 | p — 11,

)%(1 ~ V3 +V3) =(-1)T($)  (mod p)
if 24 | p — 19.

(ii) is true and the proof is complete.

We note that we prove Corollary 2.5 using only the quadratic reci-
procity.
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Corollary 2.6. Let p = 1,19 (mod 24) be a prime and hence p = C% +
2D? = 22 + 3y? for some C,D,z,y € Z.

(i) If p=1 (mod 24) and C + D =1 (mod 4), then (—1)028_1( ) =
(-1)*.

(i) If p = 19 (mod 24) and C = 1 (mod 4), then (—1)021( ) =
(=1

Proof. If p =1 (mod 24), then clearly 4 | y. E. Lehmer[L] showed that
(2+ \/§)pr1 = (—1)% (mod p). If p = 19 (mod 24), then clearly 4 | z and
p =7 (mod 12). By [Lem, Ex. 6.30, p. 206] or [S4, Theorem 8.1(2) (with
m = 4,n = 2,d = 3)] we have (24 v3)*" = (=1)i*! (mod p). Now
comparing the above results with Corollary 2.5 we deduce the corollary.

3. Congruences for (b+ va? + 172)13%1 (mod p).

Lemma 3.1 (Western’s formula ([HW, (2.9)],[Lem, pp.296-298]).
Let p and q be distinct primes of the form 8k + 1. Suppose ¢ = a® + b* =
c? + 2d? with a,b,c,d € Z. Then for j € {0,1,...,7} we have

p'T = (%)j (mod gq)

@|Q

w|Q

<—1+i

NS )j (mod p).

= ¢"F (a—b)" T (c—dv—2)"T

Theorem 3.1. Let p and q be distinct primes of the form 8k + 1. Sup-
pose p = C? +2D? = 22 + qy? and q = a® + b = 2 + 2d? with
a,b,c,d,C,D,z,y € Z and a =1 (mod 4). Then

(BT =t (A52) (), oy

a q a

and so

Proof. It is easily seen that

—2i(a — bi)(b— iy —a? — b2) = (\/—a2 — b2 — a + bi)?.
Thus

(—=20)7 (a—bi)" T (b—iv/—a2 —02)"T = (V—a2 — b2 —a+bi)"T .

13



By [S6, Theorem 5.1(ii)] we have
(M) _ (M) ~ (¥ (* +bw’) (—2).
P 4 P 4 a a\—a+bi/a
Since p = 1 (mod 8), applying [S6, Lemma 6.1] we deduce

(2 avn)™

— pT_l_z_z%l__Tyx-l-byZ x

- ) () ()
Note that (z/y)? = —a? — b* (mod p). From the above we derive

(1) 2" (a — b)) T (b—ix/y)"T

(z/y —a+bi)=
(2@’11(_@2—52)”81(_1)f(f‘:*byZ)( ) (mod p).

a —a+bi/4
Therefore,
p—1
(a2+b2)pT_1(a—b@) i (b—z—) !
(3.1) o
p—1 p—1 vy (T + byi x
=a T (@ +5) T (-1 ( a >4<—a—|—bz’>4 (mod p).

Clearly ¢ 1 x. Suppose T = (%)k (mod q) for k € Z. Then

pqg = (2% + qy?) S =T = (é>k = <%>2k (mod q).

8

Hence, appealing to Lemma 3.1 we have

p_1 —1+i\2k
2, 12 _ _ _ _ ik
(a®+b°)"% (a b2)4(c dv=2)"= _<\/__2> i" (mod p).
As ¢?D? — d*C? = ¢?D? — d?*(—2D?) = ¢D? (mod p) and ¢?D? — d?>C? =
—2d%2D? — d?>C? = —pd? (mod q), we see that (c2D? — d?C?,pq) = 1. Set
D =2°Dgy and ¢D — dC = 2" A with 21 ADy. Then (A, pg) = 1. Thus,

(=)

D =06 = (55

— (CE) () = (5 () (i
_ >< (cC +2dD)? +2(cD—dC’)2>
A

NS

(
(
(
(5)-()-(7)
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Note that (£)? = —2 (mod p). From the above we deduce

(a2 + b2)"5 (a — bi)" T
z@—dfﬁr%%sziﬁgﬁsﬁ:(gll@)k

p q
Substituting this into (3.1) we see that

(b—ix/y>4

a

(5 0 (5 () i)

From [S5, Corollary 4.6(i)] we know that T = (5) (mod p). As 2T =
(g)k (mod ¢) we have i = (—1)* (mod ¢) and so (%)= (=1)*. Thus

¢ = (2) = (—1)* (mod p). Since ¢ = a® + b? and a — bi is primary in
Z[i], we have z“T = (2)% = (—=i)* = i~* (mod a — bi) and so (

( L )4:2'_"“. Thus,

a—bi

%erih

p—t x —k _ k .-k .—k
q 7 ( .>4@ (=1)% - i7" - (mod p)

and therefore

(b - ix/y)Z

a

(_1)% (CD — dC’) (m + byi

. - )4 (mod p).

Note that (%)2 = a? 4+ b? (mod p). From Lemma 2.3 and the above we
deduce

p ‘ UPT_l (267 _a2)

— (b+ \/624—(12)%1 = (—a2)pf3;1 (mod p)
<b+\/m)pf
a

— (—1)?<CD ; dC)(x +abyi>4 _ (_1)%1 (mod p)
— (ac +abyz'>4 _ (_1)1o§1+11y<CD;dC>'

— = (—1)1%1 (mod p)

This completes the proof.
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Corollary 3.1. Let p # 17 be a prime of the form 8k + 1 and so p =
C? 4 2D? for some C,D € Z. Then

4+ VI7)"T

=1 (mod p) <= p=2a”+17y*(z,y € Z) and (-1)" = (201;73D>
and so
P | UPT—1(83_]‘)
= p=2?+1T 2wy L) and (-1)F = (201;7313)

Proof. If (%) = —1, then

A+17  4+V17T 4+ 17
—(4F V17)? £ 1 (mod p)

(4+ V177 = (4+VIT)P 4+ (VIT)P 4517

and so (4 +£17)% F £ (mod p). If (?7) =1, by [Br] or [S5, p.1324] we

have
(4+V17)"7 =1 (mod p) <= p=2>+179° (2,y € 7).

Assume p = z? + 17y? for some x,y € Z. Taking ¢ = 17, a = 1, b =
4, ¢ =3 and d = 2 in Theorem 3.1 we deduce

2C — 3D
(4% VIT)'T = (-1 (=) (mod p).
By Lemma 2.3 we have
P|Up?—1(8,—1) — @A+V1n)T E( )p%1 (mod p).
Thus the result follows.

Corollary 3.2. Let p=1 (mod 8) be a prime such that p = C? +2D? =
22 + 25Ty? # 257 for C,D,x,y € Z. Then

p=1 4C — 15D
(16 £V257) = = <CQTS> (mod p)

and so

plUsa(32,-1) < (40—_159) p1

wr )= DT

Proof. Taking ¢ =257, a=1,b =16, c =15 and d = 4 in Theorem 3.1
we obtain the result.
16



Corollary 3.3. Let p # 73 be a prime of the form 8k + 1 such that
p=C?+2D? =22+ 73> for C,D,z,y € Z. Then

p—1 - D 1 f 3 5
p|Usi(16,-9) <= 3|zy and (—1)8<60 ):{ #3 1y

73 ~1 if3]a.

Proof. Taking ¢q =73, a= -3, b=28, c=1 and d = 6 in Theorem 3.1
we see that

p|Up%1(16,—9) PN <x+8yi>4 _ <x+8yi>4 _ (_1)T<6C—D>‘

3 3 73
Since
oy )=t il
3o (BBa= (=i i3 la—y,
(58), = () =—i if3]z+y,

from the above we deduce the result.
Corollary 3.4. Let p # 41 be a prime of the form 8k + 1 such that
p=C?+2D? = 22 + 41y? for C,D,xz,y € Z. Then

p ’ U'Ple (87 _25>

p—1 4C — 3D 1 f5 |y,
< 5lzy and (_1)8+y<0—3):{ 751y

A1 ~1 if5|a.

Proof. Taking g =41, a =5, b=4, ¢ =3 and d = 4 in Theorem 3.1
we see that

Pl (8,-25) = (T) = () (T,
Since x # 2y (mod 5) and
($)a=1 if 5|y,
z + dyi (H)a = ($)a =1 if5 ],
(5, (A, = (), = i if 5|z -y,
(58), = (), =i if5|aty,

from the above we deduce the result.
17



Corollary 3.5. Let p # 89 be a prime of the form 8k 4+ 1 such that
p=C?+2D? =22 +89y> for C,D,x,y € Z. Then
P | UPT—1(167 —25)
p—1 72C — 9D 1 f 5|y,
< 5|zy and (—1)8<—>:{ Zf 'y
89 -1 if5| .

Proof. Taking g =89, a =5, b=8, ¢ =9 and d = 2 in Theorem 3.1
we see that

0t o30) = (E5) - e (0200),

Since x # +y (mod 5) and

<x+8yi) B (B, = (L) =-1 if 5 |z,
5 Ja (L), = (DY — i 5 |2 — 2,
(351)s = (Hh)a =i if 5 |z + 2y,

the result follows.

Lemma 3.2 ([E], [S1, Proposition 1], [S2, Lemma 2.1]). Letm € N
and a,b € Z with 21 m and (m,a® +b*) = 1. Then

: 2 2
()= ()

Theorem 3.2. Let A, B € 7 be such that 21 A and A*+16B? is a prime,
and let p = 1 (mod 8) be a prime such that p = x? + (A* + 16B?)y? #
A* +16B? for x,y € Z. Assume A* +16B% = ¢ +2d? and p = C? +2D?
with ¢,d,C, D € 7Z. Then

dC — D

AB + /A% 132";1;—139(—
( H16B%) = (D™ o e

) (mod p)

and

IV (6B, —4") = (0™ (i) = 07 (5)

Proof. Putting ¢ = A* 4+ 1682, a = A? and b = 4B in Theorem 3.1 we
see that

<4B — za:/y>p4

- (_1)By< dC —cD ><x+4Byi

A41§ 1682 A2 >4 (mod p).



From Lemma 3.2 we have

<x+4Byi)4 _ (a:2 +16B2y2> _ <p—A4y2) _ (

NS
~—
I
—~
SHIEN
~—

A2 A A
Thus,
L = _ By AC —cD
(43 Zy) = (1) (A4 ¥ 16B2) (mod p)
and so
z\ dC —¢D
4B + 11— = (1B ———= .
( “y> (=1) (A4+16B2> (mod p)
Since (iz/y)? = A* + 16 B? (mod p), we deduce
p—1 dC' — cD

Applying Lemma 2.3 we see that
p | UpT_l (8B7 _A4)
dC —¢D )
At +16B2

e (ST - e ()

PN (—1)By<

This proves the theorem.

Corollary 3.6. Let p=1 (mod 8) be a prime such that p = C? +2D? =
22 4+ 97y? £ 97 for C,D,xz,y € Z. Then
6C — 5D

(4 £V = (_1>y< -

> (mod p)
and so

10t 50 = () < (),

Proof. Taking A =3 and B = 1 in Theorem 3.2 we obtain the result.

Corollary 3.7. Let p=1 (mod 8) be a prime such that p = C? +2D? =
2% + 337y% # 337 for C,D,x,y € Z. Then

p—1  (12C'—=T7D
and so

p| Ui (32,-81) = (126;)%) :(—1)’%1(%).

Proof. Taking A =3 and B = 4 in Theorem 3.2 we obtain the result.
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Corollary 3.8. Let p =1 (mod 8) be a prime such that p = C? +2D? =
22 + 641y% # 641 for C,D,x,y € Z. Then

4+ \/6‘4_1)177_1 = (—1)y<—1006;121D> (mod p)

and so

p|Us1(8,-625) <= (1006%“)) :(_1)%1+y<§>.

Proof. Taking A =5 and B = 1 in Theorem 3.2 we obtain the result.
4. Five conjectures.

Conjecture 4.1. Let p = 3 (mod 8) be a prime and k € Z with 2 { k.
Suppose p = x2 + (k? + 1)y? for some x,y € Z. Then

(EFte)?-1
—(=1)—" = 27 (mod of E=5,7 (mod 8),
Vair (2K, —1) = ( (>p_1 ., (mod p) if ( )
3 Y¥) T  p4l

(1)~ 277 (modp) ifk=1,3 (mod8).

In the case k = 1 Conjecture 4.1 was proved by the author in [S6] and
C.N. Beli in [B].

Conjecture 4.2. Let p = 3 (mod 4) be a prime and k € Z with 2 1 k.
Suppose 2p = x2 + (k? + 4)y? for some x,y € 7.
(i) If k =1,3 (mod 8), then

VPTH (k,—1)

(Pzty)?-1 ptl .
) (=1)7 = —(-2)"% (modp) ifk=1,11 (mod 16),
- (Ertw?-1 p+1

—(=1)7 5 (=2)"7 (mod p) ifk=3,9 (mod 16).
(ii) If k = 5,7 (mod 8), then

—1
(Pgmy)?-1

(—1)~" = 2" (mod p) ifk=5,15 (mod 16),

—1
(B=w)2-1 g

—(=1)—"= 2% (mod p) ifk=7,13 (mod 16).

VpT-i-l (k,—1) =

In the case k = 1 Conjecture 4.2 was conjectured by the author in
[S3,56] and proved by C.N. Beli in [B].
Conjectures 4.1 and 4.2 have been checked for all 1 < k < 100 and
p < 20, 000.
Inspired by [S6, Conjectures 9.1-9.9], we pose the following conjectures.
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Conjecture 4.3. Let p =1 (mod 4) and ¢ = 3 (mod 8) be primes such
that p = 2 + d*> = 2% + qy? with ¢,d,z,y € Z and q | cd. Suppose

c=z=1 (mod 4), y =2y and yo =1 (mod 4).
(i) If p=1 (mod 8), then
qul:{ +(—1)% (mod p) if # = +c (mod q),
| T (-D)F st (—1 (mod p) if z = +d (mod q).

(ii) If p=>5 (mod 8), then

o=t +% (mod p) if © = +c¢ (mod q),
¢(_1)%3§_y (mod p) if z = +d (mod q).

T

Conjecture 4.4. Let p = 1 (mod 4) and ¢ = 7 (mod 16) be primes
such that p = ¢* + d?> = % + qy?® with ¢,d,z,y € Z and q | cd. Suppose
c=x=1 (mod4), y =2% and yo =1 (mod 4).

(i) If p=1 (mod 8), then

pslz{< ¥ (mod p) ifq|d,
(~1)% (modp) ifq]e.

(ii) If p=>5 (mod 8), then

p=5 {%(mOdp) if qd,
N —% (mod p) ifq|ec.

Conjecture 4.5. Letp =1 (mod 4) and ¢ = 15 (mod 16) be primes such
that p = 2 +d? = 22+ qy? with ¢,d, z,y € Z and q | cd. Suppose y = 25y,
and x = yo =1 (mod 4).

(i) If p=1 (mod 8), then s = (=1)7 (mod p).

(ii)) If p=5 (mod 8), then g's =14 (mod p).

Conjectures 4.3-4.5 have been checked for all primes p < 200,000 and
q < 200.
Added in proof. We have the following generalization of Conjectures
4.4 and 4.5.
Conjecture 4.6. Let q be a prime of the form 8k 4+ 7. Then there exist
disjoint subsets So, S1,S2 of {oo}U{k € Z/qZ : (%) = 1} such that for
any primes p = ¢ + d? = 2% + qy? with ¢,d, z,y € Z, x = 2%z, 28yy and
c=x9g=yo =1 (mod 4),

(~D* (mod p) if 5 €S0,
(mod p) if5€S,, for p=1(mod8),

4 (mod p) if+< €S,
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and
Y (modp)  if § €S,

¥ if €51,  for p=5 (mod ).
+% (mod p) if +5€ 85

S
0
Il
|
=
o

a.

=

Here we identify c¢/d with co when q | d, and identify a with a + qZ.
Moreover, |So| = |S1| = |52| = q+1 7 € 8o U Sy implies (“+b’)4 =1, and

7 € So implies (“+bz)4 = —1.

For ¢ = 23 we have Sy = {oo0,£10}, S; = {0,£7} and Sy =
{1,5,—9}. For ¢ = 31 we have Sy = {0,00,%1}, S; = {£7,+9} and
Sy = {-2,3,10,—15}. For ¢ = 47 we have Sy = {0,00, +4, £12}, S; =
{£1,410,£14} and Sy = {6, —7,8, —11, —17, —20}.
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